Synthesis and Characterisation of Homo- and Heterotrinuclear Complexes containing the Triply-bridging Diphenylthiophosphinito $\left[\mu_{3}-\mathrm{SPPh}_{2}\right]^{-}$Ligand: Molecular Structure of $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2} \dagger$

Juan Forniés, ${ }^{a}$ Francisco Martinez, ${ }^{a}$ Rafael Navarro, ${ }^{a}$ Esteban P. Urriolabeitia ${ }^{a}$ and Alan J. Welch ${ }^{b}$
${ }^{\text {a }}$ Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón.
Universidad de Zaragoza, Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain
${ }^{b}$ Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

The dinuclear complex $\left[\left\{P d\left(\mu-S P P h_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ reacted with the cationic precursors $\left[\mathrm{PdL}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right]^{+}\left[\mathrm{L}=2\right.$-(dimethylaminomethyl) phenyl- C^{1}, N, quinolin-8-ylmethyl- C, N or phenyl-azophenyl- $\left.C^{1}, N\right]$ and with the neutral precursors $\left[M\left(C_{6} F_{5}\right)_{2}(\text { thf })_{2}\right]$ ($M=P d$ or Pt , thf = tetrahydrofuran) to give the corresponding cationic homotrinuclear complexes $\left[\mathrm{Pd}_{3}\left(\mu_{3}-S P P h_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~L}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]_{\mathrm{ClO}}^{4}$ ($\mathrm{L}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$ 1. $\mathrm{NC}_{9} \mathrm{H}_{6} \mathrm{CH}_{2}-82$ or $\mathrm{PhN}=\mathrm{NC}_{6} \mathrm{H}_{4}$ 3) and the neutral homo- and hetero-trinuclear complexes $\left[\mathrm{Pd}_{2} \mathrm{M}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Pd} 4$ or Pt 5$)$ in which the [SPPh_{2}] group acts as a triply-bridging ligand. Complexes 1-5 have been characterized by spectroscopic methods (IR; ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$) and the molecular structure of $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{ClO}_{4} 1$ has been determined crystallographically. Complex $1 \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ crystallizes in the monoclinic system, space group $P 2_{1} / c, a=14.185(3)$, $b=21.589$ (4), $c=27.440(5) \AA, \beta=104.95(3)^{\circ}$ and $Z=4$. The model refined to final values of $R=0.0702$ and $R^{\prime}=$ 0.0849 for 5989 observed reflections $[F>4.0 \sigma(F)]$ and 860 parameters. The structure shows that the $\left[\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}$ unit behaves as a cyclic bidentate sulfur ligand, co-ordinated to the $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\right]^{+}$group through the two S atoms. The central $\mathrm{Pd}_{3}\left(\mathrm{SPPh}_{2}\right)_{2}$ cage contains two $\mu_{3}-$ SPPh $_{2}$ ligands linking the three palladium atoms.

Several co-ordination modes are known for the anionic ligand diphenylthiophosphinito $\left[\mathrm{SPPh}_{2}\right]^{-}$as is represented in Fig. 1: (a) P-monodentate, ${ }^{1}$ (b) S-monodentate, ${ }^{1 a, 2}$ (c) P,Schelate ${ }^{1 a .3 c, 4}$ and (d) di- $\mu-\mathrm{P}, \mathrm{S}$-bridging, ${ }^{1 a, 3}$ the last representing the most numerous group, probably due to the stability of the six-membered ring thereby generated. ${ }^{1 a}$

Recently we have reported the synthesis and structural characterization of M^{II} complexes ($\mathrm{M}=\mathrm{Pd}$ or Pt) containing the anionic group [$\left.\mathrm{SPPh}_{2}\right]^{-}$(diphenylthiophosphinito) acting as a di- $\mu-\mathrm{P}, \mathrm{S}$-bridging ligand ${ }^{5}$ with the $\mathrm{M}_{2}\left(\mu-\mathrm{SPPh}_{2}\right)_{2}$ core adopting a boat conformation. In these complexes, which contain two $\mu-\mathrm{SPPh}_{2}$ bridges, the sulfur atoms still have free electron pairs and can behave as donor atoms towards electrophilic metal substrates. We report in this paper the synthesis and characterization of the cationic homotrinuclear complexes $\left.\quad\left[\mathrm{Pd}_{3}\left(\mu-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~L}^{(} \mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \quad[\mathrm{~L}=2-$ (dimethylaminomethyl)phenyl- C^{1}, N, quinolin-8-ylmethyl- C, N or phenylazophenyl- $\left.C^{1}, N\right]$ and the neutral homo- and heterotrinuclear complexes $\left[\mathrm{Pd}_{2} \mathrm{M}\left(\mu-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{M}=$ Pd or Pt), obtained by reaction of $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ with the cationic $\left[\mathrm{PdL}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right]^{+}$or the neutral $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ (thf $=$ tetrahydrofuran) substrates. These trinuclear derivatives are, as far as we know, the only reported complexes which contain the $\left[\mathrm{SPPh}_{2}\right]^{-}$ligand bridging three metal centres (μ_{3}-co-ordination).

Results and Discussion

$\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$.--The dinuclear complex $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ reacts, in refluxing acetone, with the solvated precursors $\left[\mathrm{PdL}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right] \mathrm{ClO}_{4}$ ($1: 1$ molar ratio) giving the corresponding cationic trinuclear derivatives $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ in good

(a)
(b)
(c)
(d)

Fig. 1 Different co-ordination modes of the ligand [SPPh_{2}]
yield. The solvated complexes $\left[\mathrm{PdL}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right] \mathrm{ClO}_{4}$ were obtained by treatment of the chloride bridged complexes $\left[\{\mathrm{Pd}(\mu-\mathrm{Cl}) \mathrm{L}\}_{2}\right]$ with AgClO_{4} (molar ratio $1: 2$) in acetone and were used as acetone solutions without isolation of the solid product. The general process is shown in equation (1).
$\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]+\left[\mathrm{PdL}\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right] \mathrm{ClO}_{4} \longrightarrow$
$\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \quad$ (1)
L
l $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$
$\mathrm{NC}_{9} \mathrm{H}_{6} \mathrm{CH}_{2}-8$
$\mathrm{PhN}=\mathrm{NC}_{6} \mathrm{H}_{4}$

[^0]Complexes 1-3 gave satisfactory elemental analysis and behave as 1:1 electrolytes in acetone solutions ${ }^{6}$ (see Experimental section). Their mass spectra (positive FAB) indicate their trinuclear nature by the observation of a weak peak ($10-15 \%$) corresponding to the molecular peak of the cation: $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~L}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+} \quad[\mathrm{m} / \mathrm{z} 1746$ (1), 1754 (2) or 1793 (3)]. Their IR spectra (see Experimental section) show absorptions corresponding to the presence of coordinated $\mathrm{C}_{6} \mathrm{~F}_{5}$ (ref. 7) and cyclometallated L groups, ${ }^{8}$ and of the $\mathrm{ClO}_{4}{ }^{-}$anion. ${ }^{9}$ It must be noted that the absorption due to $v_{\mathrm{P}=\mathrm{S}}$ (which in the starting material appears at $570 \mathrm{~cm}^{-1}$) cannot be unambiguously assigned in these complexes since it appears at lower energies and in the same region ($<550 \mathrm{~cm}^{-1}$) as internal absorptions of the phosphines. This fact is related with the S-co-ordination of the cationic $[\mathrm{PdL}]^{+}$fragment, which results in a decrease in the strength of the P-S bond. Finally, other absorptions due to the $\left[\mathrm{SPPh}_{2}\right]^{-}$and PPh_{3} groups are overlapped, precluding an unambiguous assignment.
The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes $\mathbf{1} \mathbf{- 3}$ show a similar pattern of four doublet resonances (two AX systems) corresponding to the expected four chemically inequivalent phosphorus atoms of the molecule, as a result of the presence of the asymmetric [PdL] ${ }^{+}$group. For complex 1 each phosphorus atom of the $\mu_{3}-\mathrm{SPPh}_{2}$ bridge is coupled to the phosphorus of the PPh_{3} ligand of the other system; this coupling is not observed in $\mathbf{2}$ or 3. The lowest field doublet [$\delta_{\mathrm{p}^{\wedge 1}} 69.63$ (1), 68.58 (2), 65.42 (3)] can be assigned to the P atom of the $\left[\mathrm{SPPh}_{2}\right]^{-}$bridge having the S atom trans to the carbon atom of the cyclometallated group (see Fig. 2), by comparison of these values with that found in complex 4 ($\delta 65.59$), in which both S atoms of the $\left[\mathrm{SPPh}_{2}\right]^{-}$ bridging ligand are trans to a carbon atom $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ (see below and Experimental section). Due to the similar values of the coupling constant ${ }^{2} J_{\mathbf{p}^{1}-\mathbf{P}^{\mathbf{x}}}$, the accurate attribution of the different resonances was made by means of the two-dimensional ${ }^{31} \mathrm{P}$ ${ }^{31} \mathrm{P}$ correlation (COSY) spectra of these complexes (see Fig. 3).

The ${ }^{19} \mathrm{~F}$ NMR spectrum of complexes 1-3 show four doublets (partially overlapped) in the ortho- F region, four complex resonances in the region of meta- F atoms and two triplets for the para- F atoms. This pattern of signals indicates that both pentafluorophenyl groups are chemically inequivalent and that both halves of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand are inequivalent, as a consequence of the restricted rotation of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group around the $\mathrm{Pd}-\mathrm{C}_{\text {ipso }}$ bond (Fig. 2).

The ${ }^{1} \mathrm{H}$ NMR spectrum of complex 1 shows an $A B$ system for the diastereotopic $\mathrm{CH}_{2} \mathrm{~N}$ protons and two singlets for the methyl groups of the NMe_{2} group. In the low-field region, four resonances for the aromatic H atoms of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$ are observed (two doublets and two triplets) together with complex multiplet resonances of the Ph groups. For complex 2, an AB system is observed for the diastereotopic $\mathrm{CH}_{2}-\mathrm{Pd}$ protons. For compound 3, a complex set of resonances was observed in the low-field region, attributed to the aromatic protons of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}$ and Ph groups. Finally, upfield shifts of the

Fig. 2 Atomic numbering scheme for ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral assignment of the cationic complexes 1,2 and 3
signals due to H_{o} in 1 and $3\left[\delta\left(\mathrm{H}_{o}\right) 5.85 \mathbf{1}, 6.15\right.$ 3], or to one of the methyl groups of the NMe_{2} unit in 1 [$\delta(\mathrm{Me}) 1.29$] can be explained as a consequence of the anisotropic shielding ${ }^{10}$ of adjacent Ph rings, probably those of the bridging [$\left.\mathrm{SPPh}_{2}\right]^{-}$ group. Fig. 4 illustrates the disposition of these Ph groups relative to the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$ ligand.

Crystal Structure of $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right.\right.$ -$\left.\left.\mathrm{NMe}_{2}-2-\mathrm{C}^{1}, N\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4} \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. -Part of the cationic complex $\left[\mathrm{Pd}_{3}\left(\mu-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$is disordered in the crystal structure. The following description of the disorder is best understood with reference to Fig. 5(a) and (b). The majority of the atoms of the cation, comprising the bulky fragment $\mathrm{Pd}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}$, the lower part of the molecule in the figures, is not disordered. This fragment has local, non-rigorous two-fold symmetry. The upper portion of the cation, consisting of the less voluminous S atom of the SPPh_{2} and $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\right]^{+}$fragments, and which does not have two-fold symmetry, is disordered about the axis that serves as the local two-fold symmetry element of the bulkier bottom part of the cation. The two disordered congeners have occupancies of 0.65 [molecule A, Fig. 5(a)] and 0.35 [molecule B, Fig. 5(b)]. The connectivity of the cation is the same for the two cases; and it is easy to see that the two orientations of the cation in the crystal are equally favourable energetically, since it is the more expansive bottom

Fig. $3 \quad{ }^{31} \mathbf{P}-{ }^{31} \mathrm{P}$ COSY NMR spectrum of complex 2

Fig. 4 Schematic structural view of 1

Fig. 5 Molecular structure of the complex 1; molecule A (a), molecule B (b) and skeletal view (c)
half of this moiety that largely determines the crystal packing. Selected bond distances and angles are summarized in Table 1 and atomic coordinates are collected in Table 2.
The trinuclear cation contains three palladium atoms linked by two $\left[\mathrm{SPPh}_{2}\right]^{-}$bridging ligands. These $\left[\mathrm{SPPh}_{2}\right]^{-}$ ligands are co-ordinated through the \mathbf{P} and \mathbf{S} atoms to two of the Pd centres $[\mathrm{Pd}(1)$ and $\operatorname{Pd}(2)]$, in a mutually cis head-totail arrangement, and through the S atoms to the third Pd centre $[\operatorname{Pd}(3)]$.

Each palladium atom is located in a slightly distorted squareplanar environment: both $\operatorname{Pd}(1)$ and $\operatorname{Pd}(2)$ centres are
surrounded by a PPh_{3} and a $\mathrm{C}_{6} \mathrm{~F}_{5}$ ligand (mutually cis), a phosphorus atom of one bridging [$\left.\mathrm{SPPh}_{2}\right]^{-}$ligand and a sulfur atom of the other $\left[\mathrm{SPPh}_{2}\right]^{-}$group; the environment of the $\mathrm{Pd}(3)$ centre is formed by the two sulfur atoms of the two bridging [$\left.\mathrm{SPPh}_{2}\right]^{-}$ligands and by the C, N-cyclometallated $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$ ligand. The skeleton $\mathrm{Pd}(1) \mathrm{S}(1) \mathrm{P}(2) \mathrm{Pd}(2)-$ $\mathrm{S}(2) \mathrm{P}(1)$, which in the starting material $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right\}_{2}$] displayed a boat conformation, ${ }^{5}$ is now very distorted having lost this form [see Fig. 5(c)]. Moreover, the significant loss of planarity of the skeleton $\operatorname{Pd}(3)$ $\mathrm{C}(75) \mathrm{C}(74) \mathrm{C}(73) \mathrm{N}(1)$ of the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$ ligand is remarkable.

The $\mathrm{Pd}(1,2)-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), \mathrm{Pd}(1,2)-\mathrm{P}\left[\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}\right]$ and $\mathrm{Pd}(1,2)-\mathrm{S}\left(\mathrm{SPPh}_{2}\right)$ bond distances (see Table 1) are similar to related values found in the literature, ${ }^{11}$ as are the distances $\mathrm{Pd}(3)-\mathrm{C}$ and $\mathrm{Pd}(3)-\mathrm{N}$ to the cyclometallated ligand. Considering first molecule A , the $\mathrm{Pd}(3)-\mathrm{S}\left(\mathrm{SPPh}_{2}\right)$ distances [2.305(10) and $2.500(12) ~ \AA]$ are rather different as a result of the different trans-influence of the nitrogen and carbon atoms of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$, but are similar to those found in the related compound $\left[\mathrm{Pd}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)_{3}(\mathrm{pyt})_{2}\right] \mathrm{BF}_{4}{ }^{10}$ (pyt $=$ pyridine-2-thione). A similar situation obtains in molecule \mathbf{B}, for which the respective distances $\operatorname{Pd}\left(3^{\prime}\right)-\mathrm{S}^{\prime}\left(\mathrm{SPPh}_{2}\right)$ are $2.313(23)$ and $2.445(22) \AA$. The $\operatorname{Pd}(3)-\mathrm{C}(75)$ and $\operatorname{Pd}(3)-\mathrm{N}(1)$ (molecule A) distances are also slightly different from those found in molecule $\mathrm{B}\left[\operatorname{Pd}\left(3^{\prime}\right)-\mathrm{C}\left(75^{\prime}\right)\right.$ and $\left.\operatorname{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)\right]$ and so also the chelating angle $\mathrm{N}-\mathrm{Pd}-\mathrm{C}[\mathrm{C}(75)-\mathrm{Pd}(3)-\mathrm{N}(1) 83.7(8)$, $\left.\mathrm{C}\left(75^{\prime}\right)-\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right) 77.3(15)^{\circ}\right]$ although all these values are in the usual range found in other cyclometallated complexes. ${ }^{8 a, 10 b}$ We consider the differences found between molecules A and B to be insignificant from a chemical point of view. These distances are affected by correlation in the refinement, which is also reflected in the relatively high estimated standard deviations of parameters involved in the distorted groups.

The distances between the palladium centres [ranging from $3.578(3)$ to $4.671(2) \AA]$ indicate that there are no metal-metal bonds. The mean of the value of the P-S distances in the bridging [$\left.\mathrm{SPPh}_{2}\right]^{-}$group $[2.115(28) \AA$] is slightly longer than that found in $\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right][2.048(4) \AA] .{ }^{5}$

The dihedral angle between the best least-square planes ${ }^{12}$ defined by $\operatorname{Pd}(1) \mathrm{C}(1) \mathbf{P}(3) \mathbf{P}(1) \mathbf{S}(1)$ and $\operatorname{Pd}(2) \mathbf{C}(7) \mathbf{P}(4) \mathbf{P}(2) \mathbf{S}(2)$ is $62.1(3)^{\circ}$ and the dihedral angles between each one of these planes and the best least-squares plane defined by $\operatorname{Pd}(3) \mathbf{S}(1) \mathbf{S}(2) \mathrm{N}(1) \mathrm{C}(75) \quad$ [and $\left.\quad \mathrm{Pd}\left(3^{\prime}\right) \mathbf{S}\left(1^{\prime}\right) \mathrm{S}\left(2^{\prime}\right) \mathrm{N}\left(1^{\prime}\right) \mathrm{C}\left(75^{\prime}\right)\right]$ are $115.5(3)$ [118.3(4)] and 53.2(3) [56.3(5) ${ }^{\circ}$], respectively. On the other hand, the torsion angles ${ }^{12}$ defined by $\operatorname{Pd}(1)-\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{Pd}(2)$ and $\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{S}(2)-\mathrm{Pd}(2)$ are 63.24 and 73.67° respectively, showing the high degree of distortion undergone by the central core of the molecule after coordination of the $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\right]^{+}$fragment. The corresponding values for molecule B are $\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{S}\left(2^{\prime}\right)-$ $\mathrm{Pd}(2) 56.75^{\circ}$ and $\mathrm{Pd}(1)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{P}(2)-\mathrm{Pd}(2) 80.82^{\circ}$.
Finally, in the NMR discussion of complex 1, we have remarked on the upfield shielding of both the ortho- H and one of the methyl groups of the NMe_{2} unit of $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2$, probably induced by the phenyl groups of the $\left[\mathrm{SPPh}_{2}\right]^{-}$ bridging ligands. The calculated distance ${ }^{12}$ between the H atom bonded to $\mathrm{C}(76)$ (ortho- H , in calculated position) and the centre of the phenyl ring $\mathrm{C}(25)-\mathrm{C}(30)$ is $3.089 \AA$ and the angle between the line $\mathrm{C}(76)-\mathrm{H}(76)$ and the perpendicular to this ring is 57.47°. Moreover, the shortest distance between the H atoms bonded to $\mathrm{C}(80)$ (methyl group, in calculated positions) and the centre of the phenyl ring $\mathrm{C}(19)-\mathrm{C}(24)$ is $2.770 \AA$. In this case, the angle between the line $\mathrm{C}(80)-\mathrm{H}(80)$ and the perpendicular to this ring is 35.22°. The values of this set of parameters are in the appropriate range to propose anisotropic shielding, consistent with observations of Deeming et al. ${ }^{10}$
$\left[\mathrm{Pd}_{2} \mathrm{M}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Pd}$ or Pt$)$. As expected, the dinuclear precursor $\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.$ -

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1

$\mathrm{Pd}(1)-\mathrm{P}(1)$	2.306(4)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	2.096(39)	$\mathrm{Pd}(1)-\mathrm{P}(3)$	2.362(4)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{C}\left(75^{\prime}\right)$	1.941(34)
$\operatorname{Pd}(1)-\mathrm{S}(1)$	2.349(9)	$\mathrm{P}(1)-\mathrm{S}(2)$	2.153 (14)	$\mathrm{Pd}(1)-\mathrm{S}\left(1^{\prime}\right)$	2.378 (20)	$\mathrm{P}(1)-\mathrm{S}\left(2^{\prime}\right)$	2.020(28)
$\mathrm{Pd}(1)-\mathrm{C}(1)$	2.030(14)	$\mathrm{P}(1)-\mathrm{C}(13)$	1.825(9)	$\mathrm{Pd}(2)-\mathrm{P}(2)$	$2.296(4)$	$\mathrm{P}(1)-\mathrm{C}(19)$	1.816(9)
$\mathrm{Pd}(2)-\mathrm{P}(4)$	2.383(4)	$\mathrm{P}(2)-\mathrm{S}(1)$	2.074(11)	$\mathrm{Pd}(2)-\mathrm{S}(2)$	2.375(13)	$\mathrm{P}(2)-\mathrm{S}\left(1^{\prime}\right)$	2.213(19)
Pd(2)-S(2')	2.371 (30)	$\mathrm{P}(2)-\mathrm{C}(25)$	1.825(9)	Pd(2)-C(7)	2.012(16)	$\mathrm{P}(2)-\mathrm{C}(31)$	1.843(11)
$\mathrm{Pd}(3)-\mathrm{S}(1)$	2.305 (10)	$\mathrm{P}(3)-\mathrm{C}(37)$	1.830(10)	$\mathrm{Pd}(3)-\mathrm{S}(2)$	2.500 (12)	$\mathrm{P}(3)-\mathrm{C}(43)$	1.786(10)
$\mathrm{Pd}(3)-\mathrm{N}(1)$	2.131(24)	$\mathrm{P}(3)-\mathrm{C}(49)$	1.839(10)	Pd(3)-C(75)	1.986(17)	$\mathrm{P}(4)-\mathrm{C}(55)$	1.821(8)
$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)$	2.445(22)	$\mathrm{P}(4)-\mathrm{C}(61)$	1.797(12)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{S}\left(2^{\prime}\right)$	2.313(23)	$\mathrm{P}(4)-\mathrm{C}(67)$	1.827(10)
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{P}(3)$	173.9(2)	$\mathrm{Pd}(2)-\mathrm{P}(2)-\mathrm{C}(25)$	115.3(4)	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{S}(1)$	95.4(3)	$\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{C}(25)$	95.9(4)
$\mathrm{P}(3)-\mathrm{Pd}(1)-\mathrm{S}(1)$	87.1(3)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{P}(2)-\mathrm{C}(25)$	96.7(6)	$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{S}\left(1^{\prime}\right)$	87.1(5)	$\mathrm{Pd}(2)-\mathrm{P}(2)-\mathrm{C}(31)$	112.7(3)
$\mathrm{P}(3)-\mathrm{Pd}(1)-\mathrm{S}\left(1^{\prime}\right)$	94.5(5)	$\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	102.7(5)	$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{S}\left(1^{\prime}\right)$	11.0(5)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{P}(2)-\mathrm{C}(31)$	113.3(7)
$\mathrm{P}(1)-\mathrm{Pd}(1)-\mathrm{C}(1)$	88.5(4)	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(31)$	106.9(5)	$\mathrm{P}(3)-\mathrm{Pd}(1)-\mathrm{C}(1)$	89.4(4)	$\mathrm{Pd}(1)-\mathrm{P}(3)-\mathrm{C}(37)$	114.0(4)
$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{C}(1)$	175.5(5)	$\mathrm{Pd}(1)-\mathrm{P}(3)-\mathrm{C}(43)$	111.1(4)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{Pd}(1)-\mathrm{C}(1)$	173.4(6)	$\mathrm{C}(37)-\mathrm{P}(3)-\mathrm{C}(43)$	104.6(5)
$\mathrm{P}(2)-\mathrm{Pd}(2)-\mathrm{P}(4)$	174.7(1)	$\mathrm{Pd}(1)-\mathrm{P}(3)-\mathrm{C}(49)$	114.3(4)	$\mathrm{P}(2)-\mathrm{Pd}(2)-\mathrm{S}(2)$	89.7(3)	$\mathrm{C}(37)-\mathrm{P}(3)-\mathrm{C}(49)$	107.9(6)
$\mathbf{P}(4)-\mathrm{Pd}(2)-\mathrm{S}(2)$	93.3(3)	$\mathrm{C}(43)-\mathrm{P}(3)-\mathrm{C}(49)$	103.9(5)	$\mathrm{P}(2)-\mathrm{Pd}(2)-\mathrm{S}\left(2^{\prime}\right)$	96.1(6)	$\mathrm{Pd}(2)-\mathrm{P}(4)-\mathrm{C}(55)$	116.6(4)
$\mathbf{P}(4)-\mathrm{Pd}(2)-\mathrm{S}\left(2^{\prime}\right)$	87.5(6)	$\mathrm{Pd}(2)-\mathrm{P}(4)-\mathrm{C}(61)$	111.0(4)	$\mathrm{P}(2)-\mathrm{Pd}(2)-\mathrm{C}(7)$	86.5(4)	$\mathrm{C}(55)-\mathrm{P}(4)-\mathrm{C}(61)$	104.1(5)
$\mathrm{P}(4)-\mathrm{Pd}(2)-\mathrm{C}(7)$	90.2(4)	$\mathrm{Pd}(2)-\mathrm{P}(4)-\mathrm{C}(67)$	113.4(3)	$\mathrm{S}(2)-\mathrm{Pd}(2)-\mathrm{C}(7)$	174.6(5)	$\mathrm{C}(55)-\mathrm{P}(4)-\mathrm{C}(67)$	106.7(5)
$\mathrm{S}\left(2^{\prime}\right)-\mathrm{Pd}(2)-\mathrm{C}(7)$	175.8(6)	$\mathrm{C}(61)-\mathrm{P}(4)-\mathrm{C}(67)$	103.8(6)	$\mathrm{S}(1)-\mathrm{Pd}(3)-\mathrm{S}(2)$	90.6(4)	$\mathrm{Pd}(1)-\mathrm{S}(1)-\mathrm{Pd}(3)$	100.5(4)
$\mathrm{S}(1)-\mathrm{Pd}(3)-\mathrm{N}(1)$	171.1(7)	$\mathrm{Pd}(1)-\mathrm{S}(1)-\mathrm{P}(2)$	111.6(4)	$\mathrm{S}(2)-\mathrm{Pd}(3)-\mathrm{N}(1)$	96.2(6)	$\mathrm{Pd}(3)-\mathrm{S}(1)-\mathrm{P}(2)$	98.1(4)
$\mathrm{S}(1)-\mathrm{Pd}(3)-\mathrm{C}(75)$	89.9(6)	$\mathrm{Pd}(2)-\mathrm{S}(2)-\mathrm{Pd}(3)$	106.3(5)	$\mathrm{S}(2)-\mathrm{Pd}(3)-\mathrm{C}(75)$	176.2(7)	$\mathrm{Pd}(2)-\mathrm{S}(2)-\mathrm{P}(1)$	109.4(5)
$\mathrm{N}(1)-\mathrm{Pd}(3)-\mathrm{C}(75)$	83.7(8)	$\mathrm{Pd}(3)-\mathrm{S}(2)-\mathrm{P}(1)$	94.3(5)	$\mathrm{S}\left(1^{\prime}\right)-\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{S}\left(2^{\prime}\right)$	90.0(8)	$\mathrm{Pd}(1)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{P}(2)$	105.8(7)
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	100.0(13)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{S}\left(1^{\prime}\right)-\mathrm{P}(2)$	99.7(8)	$\mathrm{S}\left(2^{\prime}\right)-\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	170.0(15)	$\mathrm{Pd}(2)-\mathrm{S}\left(2^{\prime}\right)-\mathrm{Pd}\left(3^{\prime}\right)$	102.2(9)
$\mathrm{S}\left(1^{\prime}\right)-\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{C}\left(75^{\prime}\right)$	174.2(11)	$\mathrm{Pd}(2)-\mathrm{S}\left(2^{\prime}\right)-\mathrm{P}(1)$	114.5(13)	$\mathrm{S}\left(2^{\prime}\right)-\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{C}\left(75^{\prime}\right)$	92.7(11)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{S}\left(2^{\prime}\right)-\mathrm{P}(1)$	94.1(11)
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{S}(2)$	113.9(4)	$\mathrm{Pd}(3)-\mathrm{N}(1)-\mathrm{C}(73)$	103.7(17)	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{S}\left(2^{\prime}\right)$	122.5(7)	$\mathrm{Pd}(3)-\mathrm{N}(1)-\mathrm{C}(80)$	118.9(18)
$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	114.2(4)	$\mathrm{C}(73)-\mathrm{N}(1)-\mathrm{C}(80)$	106.8(21)	S(2)-P(1)-C(13)	110.0(5)	$\mathrm{Pd}(3)-\mathrm{N}(1)-\mathrm{C}(81)$	111.0(16)
$\mathrm{S}\left(2^{\prime}\right)-\mathrm{P}(1)-\mathrm{C}(13)$	100.2(8)	$\mathrm{C}(73)-\mathrm{N}(1)-\mathrm{C}(81)$	107.2(19)	$\mathrm{Pd}(1)-\mathrm{P}(1)-\mathrm{C}(19)$	113.2(4)	$\mathrm{C}(80)-\mathrm{N}(1)-\mathrm{C}(81)$	108.5(24)
$\mathrm{S}(2)-\mathrm{P}(1)-\mathrm{C}(19)$	98.1(5)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(73^{\prime}\right)$	106.6(26)	$\mathrm{S}\left(2^{\prime}\right)-\mathrm{P}(1)-\mathrm{C}(19)$	98.4(9)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(80^{\prime}\right)$	106.4(27)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(19)$	106.0(5)	$\mathrm{C}\left(73^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(80^{\prime}\right)$	122.0(39)	$\mathrm{Pd}(2)-\mathrm{P}(2)-\mathrm{S}(1)$	121.2(3)	$\mathrm{Pd}\left(3^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)$	112.7(29)
$\mathrm{Pd}(2)-\mathrm{P}(2)-\mathrm{S}\left(1^{\prime}\right)$	111.0(5)	$\mathrm{C}\left(73^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{C}\left(81^{\prime}\right)$	101.6(33)	$\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{S}\left(1^{\prime}\right)$	11.6(6)		

$\left.\left.\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$ also reacts with the neutral substrates cis$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](\mathrm{M}=\mathrm{Pd}$ or Pt$)\left(1: 1\right.$ molar ratio, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give the corresponding neutral homo- and hetero-trinuclear complexes $\left[\mathrm{Pd}_{2} \mathrm{M}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{M}=\mathrm{Pd} 4$ or Pt 5) respectively [equation (2)].

$$
\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]+\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \longrightarrow
$$

$$
\begin{gathered}
{\left[\mathrm{Pd}_{2} \mathrm{M}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]} \\
\mathrm{M}=\mathrm{Pd} \mathbf{4} \text { or } \mathrm{Pt} 5
\end{gathered}
$$

Complexes $\mathbf{4}$ and 5 show satisfactory elemental analyses and behave as non-electrolytes in acetone solutions. ${ }^{6}$ Their mass spectra do not provide valuable information in this case, showing only peaks due to fragmentation and redistribution of ligands, but not the molecular peak. The IR spectra show similar features to those described for complexes 1-3: absorptions corresponding to the presence of co-ordinated $\mathrm{C}_{6} \mathrm{~F}_{5},\left[\mathrm{SPPh}_{2}\right]^{-}$and PPh_{3} groups are present.

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes $\mathbf{4}$ and $\mathbf{5}$ show the presence of a single AX system, with ${ }^{195} \mathrm{Pt}$ satellites in the case of 5 . This pattern of signals is in agreement with the proposed structure (Fig. 6).

The ${ }^{19}$ F NMR spectrum of 4 shows four resonances (two partially overlapped) due to ortho- F atoms, two triplets corresponding to the para- F atoms and three complex resonances of relative intensity $1: 1: 2$, corresponding to the meta-F atoms. A similar pattern of signals can be observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum of 5 , the ortho- F region showing four well separated signals, two of them with ${ }^{195} \mathrm{Pt}$ satellites. This pattern is in good agreement with the proposed structure (Fig. 6) and implies: (a) the equivalence of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups of the $\left[\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}$ fragment and the equivalence of the rings of the $\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ fragment; (b) the rigidity of the molecule on the NMR time-scale and (c) the restricted rotation of the pentafluorophenyl ligands around the M-C $\mathrm{C}_{\text {ipso }}$ bonds. Full assignment of the resonances in 5 was made through selective irradiation experiments.

Fig. 6 Atomic numbering scheme for ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral assignment of the neutral complexes 4 and 5

Experimental

Solvents were dried and distilled under nitrogen by standard methods prior to use. Elemental analyses were carried out on a Perkin-Elmer 240 -B microanalyser. Infrared spectra (4000$200 \mathrm{~cm}^{-1}$) were recorded on a Perkin-Elmer 883 infrared spectrophotometer in Nujol mulls between polyethylene sheets. NMR spectra were recorded on a Bruker ARX-300 spectrometer; ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300.13 MHz in CDCl_{3} using the solvent signal as internal standard; ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 282.30 MHz and externally referenced to $\mathrm{CFCl}_{3} ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at 121.49 MHz and externally referenced to $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \%)$. Mass spectra were recorded on a V.G. Autospec. Conductivity measurements were carried out in acetone solutions $\left(\approx 5 \times 10^{4}\right.$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$) on a Philips PW-9509 digital conductivity meter. The starting compounds $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right]$, ${ }^{5}$

Table 2 Atomic coordinates ($\times 10^{4}$) for complex 1

Atom	x	y	z	Atom	x	y	z
Pd(1)	$6303(1)$	7 561(1)	$2191(1)$	$\mathrm{C}(42)$	3543	8389	1496
$\operatorname{Pd}(2)$	$8227(1)$	8720 (1)	$1378(1)$	C(43)	$3925(7)$	7 056(5)	$1860(4)$
Pd(3)	6 484(2)	$7318(1)$	928(1)	C(44)	2930	7044	1833
Pd (3')	7 056(3)	$7242(2)$	959(2)	C(45)	2326	6612	1525
$\mathrm{P}(1)$	7880 (3)	7 374(2)	$2147(2)$	C(46)	2717	6192	1243
$\mathrm{P}(2)$	$6581(3)$	$8777(2)$	$1308(1)$	C(47)	3713	6204	1270
$\mathrm{P}(3)$	4 668(3)	$7637(2)$	$2238(2)$	C(48)	4317	6636	1579
$\mathrm{P}(4)$	9 907(3)	$8713(2)$	1380 (2)	C(49)	4 496(8)	7 509(5)	2 872(3)
S(1)	5 780(7)	7 994(4)	$1381(3)$	C(50)	4873	7934	3256
S(2)	8 148(9)	7 624(6)	$1435(5)$	C(51)	4775	7827	3741
S(1')	5 949(14)	7843 (8)	$1325(8)$	C(52)	4302	7295	3844
S(2')	8 377(18)	7 644(14)	$1553(9)$	C(53)	3926	6870	3460
C(1)	6 681(9)	7 231(7)	2 908(5)	C(54)	4023	6977	2974
$\mathrm{C}(2)$	7 131(10)	$7617(8)$	3 299(6)	C(55)	10 764(6)	8 444(5)	$1955(3)$
$\mathrm{C}(3)$	$7362(11)$	$7436(8)$	$3794(6)$	C(56)	11464	8830	2258
C(4)	7 146(11)	$6876(8)$	$3919(6)$	C(57)	12071	8605	2706
C(5)	6 694(12)	$6478(7)$	3 548(6)	C(58)	11977	7993	2852
C(6)	6476(11)	6 650(7)	$3057(6)$	C(59)	11277	7607	2549
F(1)	$7319(6)$	8 217(4)	3 192(3)	C(60)	10670	7833	2101
F(2)	$7800(7)$	$7859(5)$	4 148(3)	C(61)	$10118(8)$	8 209(5)	897(4)
F(3)	$7376(7)$	$6705(5)$	4 412(3)	C(62)	9368	8115	461
F(4)	$6462(7)$	5 901(5)	3 685(3)	C(63)	9536	7759	68
F(5)	$5987(7)$	6 249(4)	2713 (3)	C(64)	10453	7498	110
C(7)	8 180(10)	9 644(7)	1275 (7)	C(65)	11203	7593	546
C(8)	8 138(12)	9 932(9)	789(8)	C(66)	11035	7948	939
C(9)	$8175(13)$	10 557(10)	$728(9)$	C(67)	$10351(7)$	$9465(4)$	$1230(4)$
$\mathrm{C}(10)$	8 205(14)	10 948(10)	$1111(12)$	C(68)	10577	9565	770
C(11)	8 234(12)	10 709(9)	$1593(11)$	$\mathrm{C}(69)$	10878	10150	655
C(12)	8 268(11)	10 046(8)	$1704(10)$	C(70)	10953	10635	999
F(6)	$8150(7)$	9 576(5)	407(4)	C(71)	10727	10535	1458
F(7)	8 205(8)	10800 (6)	286(5)	C(72)	10426	9950	1574
$\mathrm{F}(8)$	8 262(9)	11 550(5)	$1066(6)$	$\mathrm{N}(1)$	6 955(16)	6 596(10)	516(8)
F(9)	8 348(9)	11 066(5)	$2014(6)$	C (73)	6 098(21)	6 147(11)	397(10)
F(10)	8371 (8)	$9832(5)$	2 147(4)	C (74)	5 156(13)	$6533(8)$	266(7)
C(13)	$8815(6)$	7710 (4)	2 664(3)	C(75)	5172	7114	491
C(14)	9035	8340	2658	$\mathrm{C}(76)$	4344	7489	370
C(15)	9651	8615	3082	C (77)	3500	7284	24
C(16)	10049	8262	3511	$\mathrm{C}(78)$	3484	6704	- 202
C(17)	9830	7632	3517	C(79)	4312	6328	-80
C(18)	9213	7357	3093	C(80)	$7795(24)$	6247 (13)	755(12)
C (19)	8 167(7)	$6555(4)$	$2139(4)$	C(81)	$7076(19)$	$6828(13)$	30(9)
$\mathrm{C}(20)$	7422	6115	2033	$\mathrm{N}\left(1^{\prime}\right)$	6040 (30)	$6787(20)$	378(16)
C(21)	7642	5493	1979	$\mathrm{C}\left(73^{\prime}\right)$	6473(24)	$6783(21)$	--83(17)
C(22)	8606	5311	2030	C(74')	7426(19)	6 482(16)	199(12)
C(23)	9351	5752	2135	$\mathrm{C}\left(75^{\prime}\right)$	7871	6690	685
$\mathrm{C}(24)$	9131	6373	2190	$\mathrm{C}\left(76^{\prime}\right)$	8839	6535	912
$\mathrm{C}(25)$	$5831(7)$	8 999(5)	687(3)	$\mathrm{C}\left(77^{\prime}\right)$	9363	6172	653
C(26)	6171	8904	259	$\mathrm{C}\left(78^{\prime}\right)$	8919	5964	166
$\mathrm{C}(27)$	5550	9000	- 220	$\mathrm{C}\left(79^{\prime}\right)$	7950	6119	-61
$\mathrm{C}(28)$	4590	9191	-270	$\mathrm{C}\left(80^{\prime}\right)$	5741 (42)	$6140(27)$	624(22)
C(29)	4250	9286	158	$\mathrm{C}\left(81{ }^{\prime}\right)$	$5093(33)$	$7167(21)$	176(17)
$\mathrm{C}(30)$	4871	9190	637	$\mathrm{Cl}(1)$	$5167(6)$	4 653(4)	$1224(3)$
C(31)	6 281(7)	9 317(4)	$1767(3)$	$\mathrm{O}(1)$	$6037(18)$	4 292(12)	$1349(9)$
C(32)	5896	9907	1638	O(2)	5355 (17)	$5175(12)$	$1562(9)$
C(33)	5777	10312	2014	$\mathrm{O}(3)$	4321 (18)	4 348(11)	1240 (9)
C(34)	6044	10127	2518	$\mathrm{O}(4)$	4 939(17)	4 865(11)	741 (10)
C(35)	6429	9537	2646	C(82)	$8380(21)$	5 512(36)	-924(19)
C(36)	6547	9132	2271	$\mathrm{Cl}(2)$	$9036(24)$	$5089(15)$	- 1244 (11)
C(37)	$4077(7)$	8 369(4)	$2000(4)$	$\mathrm{Cl}(3)$	9 133(24)	$5759(15)$	- $371(11)$
C(38)	4144	8896	2302	C(82')	2 193(80)	$5931(25)$	-242(14)
C(39)	3677	9442	2100	$\mathrm{Cl}\left(2^{\prime}\right)$	$1852(30)$	$5472(16)$	-761(17)
C(40)	3143	9462	1596	$\mathrm{Cl}\left(3^{\prime}\right)$	$2524(30)$	6 638(17)	-415(16)
C(41)	3076	8936	1294				

$\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \quad(\mathrm{M}=\mathrm{Pd}$ or Pt$),{ }^{13,14} \quad\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}\right.\right.\right.$ $\left.\left.\mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)_{2}\right]^{15}{ }^{15}\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{NC}_{9} \mathrm{H}_{6} \mathrm{CH}_{2}-8\right)\right\}_{2}\right]^{16}$ and $[\{\mathrm{Pd}-$ $\left.\left.(\mu-\mathrm{Cl})\left(\mathrm{PhN}=\mathrm{NC}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right]^{17}$ were prepared according to published procedures.

Synthesis of Cationic Complexes $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{~L}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}\left(\mathrm{~L}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-21, \mathrm{NC}_{9} \mathrm{H}_{6} \mathrm{CH}_{2}-82\right.$ or $\mathrm{PhN}=\mathrm{NC}_{6} \mathrm{H}_{4} 3$ 3).-As a general method, we describe here the
synthesis of $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{ClO}_{4}$ 1: to a suspension of $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\right.\right.\right.$ $\left.\left.\left.\mathrm{NMe}_{2}-2\right)\right\}_{2}\right](0.137 \mathrm{~g}, 0.249 \mathrm{mmol})$ in acetone ($20 \mathrm{~cm}^{3}$) was added $\mathrm{AgClO}_{4}(0.103 \mathrm{~g}, 0.498 \mathrm{mmol})$. The resulting mixture was stirred for 45 min at room temperature with exclusion of the light and then filtered. To the freshly prepared solution of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)\left(\mathrm{Me}_{2} \mathrm{CO}\right)_{2}\right] \mathrm{ClO}_{4}$ was added $[\{\mathrm{Pd}-$ $\left.\left.\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right](0.750 \mathrm{~g}, 0.498 \mathrm{mmol})$ suspended in
acetone ($30 \mathrm{~cm}^{3}$) and then heated at the reflux temperature. The initially yellow suspension gradually dissolved and its colour changed, giving an orange solution after 45 min refluxing. The resulting solution was cooled and the solvent removed to small volume ($\approx 4 \mathrm{~cm}^{3}$). Addition of $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ and stirring gave 1 as an orange solid, 0.690 g (75% yield) (Found: C, 52.45 ; H, 3.50; N, $0.70 . \mathrm{C}_{81} \mathrm{H}_{62} \mathrm{ClF}_{10} \mathrm{NO}_{4} \mathrm{P}_{4} \mathrm{Pd}_{3} \mathrm{~S}_{2}$ requires C, $52.70 ; \mathrm{H}$, $3.40 ; \mathrm{N}, 0.75 \%$). IR (cm^{11}): $1580 \mathrm{~m}(\mathrm{~L}), 1505 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 1100 \mathrm{vs}$ $\left(\mathrm{ClO}_{4}{ }^{-}\right), 956 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, 845s (L), 782s ($\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}$-sensitive), $623 \mathrm{vs}\left(\mathrm{ClO}_{4}{ }^{-}\right), 523 \mathrm{vs}, 520 \mathrm{vs}, 510 \mathrm{vs}$ and $490 \mathrm{vs}\left[\left(\mathrm{SPPh}_{2}\right)^{-}+\right.$ $\left.\mathrm{PPh}_{3}\right] . \Lambda_{\mathrm{M}}=106 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. NMR (room temp.): ${ }^{1} \mathrm{H}, \delta$ $8.21-6.93(\mathrm{~m}, 50 \mathrm{H}, \mathrm{Ph}), 6.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$ of $\left.\mathrm{L},{ }^{3} J_{\mathrm{H}^{\mathrm{b}} \cdot \mathrm{H}^{\mathrm{c}}}=7.22\right)$, $6.81\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right.$ of L$), 6.25\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right.$ of $\left.\mathrm{L},{ }^{3} J_{\mathbf{H}^{\mathrm{c}}-\mathrm{H}^{\mathrm{d}}}=7.10\right), 5.85$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{o}\right.$ of L, $\left.{ }^{3} J_{\mathbf{H}^{d}-\mathrm{H}_{o}}=7.80\right), 3.74,3.18(\mathrm{AB}$ system, 2 H , $\left.\mathrm{CH}_{2} \mathrm{~N},{ }^{2} J_{\mathrm{H}^{-}} \mathrm{H}^{\mathrm{b}}=14\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}_{2}\right)$ and $1.29(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{NMe}_{2}\right) ;{ }^{19} \mathrm{~F}, \delta-114.87\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{\rho}\right),-115.00\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right)$, $-115.23\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-115.36\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-159.07\left(\mathrm{t}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right)$, $-159.14\left(\mathrm{t}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-160.92\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-161.16(\mathrm{~m}, 1 \mathrm{~F}$, $\left.\mathrm{F}_{m}\right),-161.36\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right)$ and $-161.58\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 69.63$ (dd, $1 \mathrm{P}, \mathrm{P}^{\mathrm{A}^{\prime 1}}-\mathrm{S}$ trans $\mathrm{C},{ }^{2} J_{\mathrm{P}^{\wedge} 1} \mathrm{P}^{\times 1}=468,{ }^{3}{ }_{\mathrm{P}^{\mathrm{A}^{1}}-\mathrm{p}^{\mathrm{x}}}=$ 10.5), 56.24 (dd, $1 \mathrm{P}, \mathrm{P}^{\mathrm{A}^{2}}-\mathrm{S}$ trans $\mathrm{N},{ }^{2} J_{\mathrm{P}^{\mathrm{A}^{2}}-\mathrm{P}^{\mathrm{x}^{2}}}=472,{ }^{3} J_{\mathrm{P}^{\mathrm{A}^{2}}}$ $\mathbf{P}^{\mathbf{x}^{1}}=10.5 \mathrm{~Hz}$), $16.57\left(\mathrm{dd}, 1 \mathrm{P}, \mathrm{P}^{{ }^{1} 1} \mathrm{Ph}_{3}\right)$ and $15.87(\mathrm{dd}, 1 \mathrm{P}$, ${ }^{\mathrm{P}^{\mathrm{X}}}{ }^{\mathrm{X}} \mathrm{Ph}_{3}$).

Complexes 2 and $\mathbf{3}$ were prepared similarly. Complex 2. The complex $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{NC}_{9} \mathrm{H}_{6} \mathrm{CH}_{2}-8\right)\right\}_{2}\right](0.142 \mathrm{~g}, 0.249 \mathrm{mmol})$ was treated with $\mathrm{AgClO}_{4}(0.103 \mathrm{~g}, 0.498 \mathrm{mmol})$ and $[\{\mathrm{Pd}(\mu-$ $\left.\left.\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\right\}_{2}$] ($0.750 \mathrm{~g}, 0.498 \mathrm{mmol}$) to give $2(0.646$ $\mathrm{g}, 70 \%$ yield) as a pale-orange solid (Found: C, 52.90 ; H, 3.55 ; $\mathrm{N}, 0.85 . \mathrm{C}_{82} \mathrm{H}_{58} \mathrm{ClF}_{10} \mathrm{NO}_{4} \mathrm{P}_{4} \mathrm{Pd}_{3} \mathrm{~S}_{2}$ requires C, 53.10; $\mathrm{H}, 3.15$; $\mathrm{N}, 0.75 \%$). IR $\left(\mathrm{cm}^{-1}\right): 1635 \mathrm{~m}, 1615 \mathrm{~m}, 1590 \mathrm{~m}(\mathrm{~L}), 1500 \mathrm{vs}$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 1100 \mathrm{vs}\left(\mathrm{ClO}_{4}{ }^{-}\right), 955 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 830 \mathrm{~s}(8-\mathrm{mq}), 775 \mathrm{~s}$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}\right.$-sensitive), 623vs $\left(\mathrm{ClO}_{4}{ }^{-}\right)$, $525 \mathrm{vs}, 510 \mathrm{vs}, 505 \mathrm{vs}$ and $485 \mathrm{vs}\left[\left(\mathrm{SPPh}_{2}\right)^{-}+\mathrm{PPh}_{3}\right] . \Lambda_{\mathrm{M}}=94 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. NMR (room temp.): ${ }^{1} \mathrm{H}, \delta 8.50-6.76(\mathrm{~m}$, aromatics) and 3.12, 2.97 (AB system, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Pd},{ }^{2} J_{\mathrm{H}^{\mathrm{s}}-\mathrm{H}^{\mathrm{b}}}=13.8 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}, \delta-114.53(\mathrm{~m}$, $\left.2 \mathrm{~F}, \mathrm{~F}_{o}\right),-115.15\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-116.26\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-159.25(\mathrm{t}$, $1 \mathrm{~F}, \mathrm{~F}_{\mathrm{p}}$), $-159.29\left(\mathrm{t}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-160.87\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-161.27(\mathrm{~m}$, $\left.1 \mathrm{~F}, \mathrm{~F}_{m}\right),-161.63\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right)$ and $-162.17\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right) ;{ }^{31} \mathrm{P}-$ $\left\{{ }^{1} \mathrm{H}\right\}, \delta 68.58\left(\mathrm{~d},{ }^{1} \mathrm{P}, \mathrm{P}^{\mathrm{A}^{1}}-\mathrm{S}\right.$ trans $\left.\mathrm{C},{ }^{2} J_{\mathrm{P}^{\mathrm{A}_{1}}-\mathrm{p}^{\mathrm{x}_{1}}}=468 \mathrm{~Hz}\right)$,
 $\left.\mathrm{P}^{\mathrm{X} 1} \mathrm{Ph}_{3}\right), 16.34\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}^{\mathrm{X} 2} \mathrm{Ph}_{3}\right)$. Complex 3. The complex $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{PhN}=\mathrm{NC}_{6} \mathrm{H}_{4}\right)\right\}_{2}\right](0.149 \mathrm{~g}, 0.229 \mathrm{mmol})$ was treated with $\mathrm{AgClO}_{4}(0.096 \mathrm{~g}, 0.459 \mathrm{mmol})$ and $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.$ $\left.\left.\left.\mathrm{PPh}_{3}\right)\right\}_{2}\right](0.692 \mathrm{~g}, 0.459 \mathrm{mmol})$ to give $3(0.531 \mathrm{~g}, 61 \%$ yield $)$ as a pale-orange solid (Found: C, $53.20 ; \mathrm{H}, 3.25 ; \mathrm{N}, 1.45$. $\mathrm{C}_{84} \mathrm{H}_{59} \mathrm{ClF}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{4} \mathrm{Pd}_{3} \mathrm{~S}_{2}$ requires C, $53.30 ; \mathrm{H}, 3.15 ; \mathrm{N}$, 1.50%). IR (cm^{-1}): $1570 \mathrm{~m}(\mathrm{~L}), 1500 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 1090 \mathrm{vs}\left(\mathrm{ClO}_{4}{ }^{-}\right)$, 955vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 780s ($\mathrm{C}_{6} \mathrm{~F}_{5}$, X-sensitive), $765 \mathrm{~s}(\mathrm{~L}), 623 \mathrm{vs}\left(\mathrm{ClO}_{4}\right)$, $520 \mathrm{vs}, \quad 505 \mathrm{vs}, 480 \mathrm{vs}\left[\left(\mathrm{SPPh}_{2}\right)^{-}+\mathrm{PPh}_{3}\right] . \Lambda_{\mathrm{M}}=105 \Omega^{1}$ $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$. NMR (room temp.): ${ }^{1} \mathrm{H}, \delta 8.02-6.59(\mathrm{~m}$, aromatics) and $6.15\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{o},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.27 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}, \delta-114.14(\mathrm{~d}, 1 \mathrm{~F}$, $\left.\mathrm{F}_{\mathrm{F}}\right),-114.25\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-115.25\left(\mathrm{~d}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}}\right),-115.35(\mathrm{~d}, 1 \mathrm{~F}$, $\left.\mathrm{F}_{o}\right),-158.53\left(\mathrm{t}, 2 \mathrm{~F}, 2 \mathrm{~F}_{p}\right),-160.68\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-160.76(\mathrm{~m}$, $\left.1 \mathrm{~F}, \mathrm{~F}_{m}\right),-161.10\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right)$ and $-161.49\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{m}\right) ;{ }^{31} \mathrm{P}$ $\left\{{ }^{1} \mathrm{H}\right\}, \delta^{m} 65.42\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}^{\mathrm{A}^{1}}-\mathrm{S}\right.$ trans $\left.\mathrm{C},{ }^{2} J_{\mathrm{P}^{\mathbf{A}^{1}}} \mathrm{P}^{\mathrm{x}_{1}}=468\right), 54.45(\mathrm{~d}$,
 and $16.79\left(\mathrm{~d}, 1 \mathrm{P}, \mathrm{P}^{\mathrm{x} 2} \mathrm{Ph}_{3}\right)$.

Synthesis of $\left[\mathrm{Pd}_{2} \mathrm{M}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{M}=\mathrm{Pd} 4$ or Pt 5$)$.-Complex 4. To a solution of $\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.$ $\left.\left.\mathrm{PPh}_{3}\right)_{2}\right](0.413 \mathrm{~g}, 0.274 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.160 \mathrm{~g}, 0.274 \mathrm{mmol})$. The resulting pale yellow solution was stirred at room temperature for 45 min and then evaporated to dryness. Addition of n-hexane ($20 \mathrm{~cm}^{3}$) and stirring gave $\left[\mathrm{Pd}_{3}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right] 4(0.422 \mathrm{~g}, 79 \%$ yield) as a pale yellow solid (Found: C, $51.45 ; \mathrm{H}, 2.55$. $\mathrm{C}_{84} \mathrm{H}_{50} \mathrm{~F}_{20} \mathrm{P}_{4} \mathrm{Pd}_{3} \mathrm{~S}_{2}$ requires C, $51.85 ; \mathrm{H}, 2.60 \%$). IR (cm^{-1}): $1500 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, 960vs ($\mathrm{C}_{6} \mathrm{~F}_{5}$), 800s, 790s, 780s ($\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}-$ sensitive), $510 \mathrm{vs}, 505 \mathrm{vs}$ and $490 \mathrm{vs}\left[\left(\mathrm{SPPh}_{2}\right)^{-}+\mathrm{PPh}_{3}\right]$. NMR (room temp.): ${ }^{19} \mathrm{~F}, \delta-110.71\left(\mathrm{~d}, 4 \mathrm{~F}, \mathrm{~F}_{o}\right),-114.92\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right)$, $-115.60\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-160.34\left(\mathrm{t}, 2 \mathrm{~F}, \mathrm{~F}_{p}\right),-161.30(\mathrm{~m}, 2 \mathrm{~F}$,
F_{m}), $-162.44\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right),-163.26\left(\mathrm{t}, 2 \mathrm{~F}, \mathrm{~F}_{p}\right)$ and -165.01 $\left(\mathrm{m}, 4 \mathrm{~F}, \mathrm{~F}_{m}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 65.59\left(\mathrm{~d}, 2 \mathrm{P}, \mu_{3}-\mathrm{P}^{\mathrm{A}} \mathrm{S}\right)$ and $16.30(\mathrm{~d}$, $\left.2 \mathrm{P}, \mathrm{P}^{\mathrm{x}} \mathrm{Ph}_{3}\right)\left(\mathrm{AX}\right.$ system, $\left.{ }^{2} J_{\mathrm{p}^{\wedge} \mathrm{p}^{\mathrm{x}}}=464 \mathrm{~Hz}\right)$.

Complex 5 was prepared similarly: $\left[\left\{\operatorname{Pd}\left(\mu-\mathrm{SPPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)-\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{3}\right)\right\}_{2}\right](0.424 \mathrm{~g}, 0.281 \mathrm{mmol}),\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.189 \mathrm{~g}$, $0.281 \mathrm{mmol}),\left[\mathrm{Pd}_{2} \mathrm{Pt}\left(\mu_{3}-\mathrm{SPPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right] 5(0.480 \mathrm{~g}$, 84% yield), yellow solid (Found: C, 48.95 ; H, 2.50 . $\mathrm{C}_{84} \mathrm{H}_{50} \mathrm{~F}_{20} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{PtS}_{2}$ requires C, $49.55 ; \mathrm{H}, 2.45 \%$). IR (cm^{-1}): $1500 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 957 \mathrm{vs}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 798 \mathrm{~s}, 789 \mathrm{~s}, 777 \mathrm{~s}\left(\mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{X}\right.$-sensitive $)$, 532 vs , 520 vs , 491vs [$\left(\mathrm{SPPh}_{2}\right)^{-}+\mathrm{PPh}_{3}$]. NMR (room temp.): ${ }^{19} \mathrm{~F}, \delta-110.78\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-113.84\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~F}_{o},{ }^{3} J_{\mathrm{Pt}-\mathrm{F}_{o}}=\right.$ 435), $-115.07\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-118.97\left(\mathrm{~d}, 2 \mathrm{~F}, \mathrm{~F}_{o},{ }^{3} J_{\mathrm{P}_{\mathrm{t}}-\mathrm{F}_{\mathrm{o}}}=\right.$ 373 Hz), $-160.17\left(\mathrm{t}, 2 \mathrm{~F}, \mathrm{~F}_{p}\right),-161.59\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right)$, $-162.47\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m}\right),-164.66\left(\mathrm{t}, 2 \mathrm{~F}, \mathrm{~F}_{p}\right)$ and -165.94 $\left(\mathrm{m}, 4 \mathrm{~F}, \mathrm{~F}_{m}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 73.74\left(\mathrm{~d}, 2 \mathrm{P}, \mu_{3}-\mathrm{P}^{\mathrm{A}} \mathrm{S},{ }^{2} \mathrm{~J}_{\mathrm{Pt}-\mathrm{P}^{\mathrm{A}}}=114\right)$ and $16.70\left(\mathrm{~d}, 2 \mathrm{P}, \mathrm{P}^{\mathrm{X}} \mathrm{Ph}_{3},{ }^{3} J_{\mathrm{P}_{t}-\mathrm{P}^{\mathrm{x}}}=90\right)\left(\mathrm{AX}\right.$ system, ${ }^{2} J_{\mathrm{P}^{\wedge}-\mathrm{P}^{\mathrm{x}}}=$ 459 Hz).
${ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}$ COSY Experiments.-The experiments were performed at a measuring frequency of 121.5014 MHz in CDCl_{3}. The data were acquired into a 256×1024 matrix and then transformed into 1024×1024 points using a sine window in each dimension.

Crystal Structure Determination.-Suitable crystals of complex 1 (crystal size $0.25 \times 0.45 \times 0.35 \mathrm{~mm}$) were obtained by slow diffusion of n-hexane into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the crude product at room temperature. Intensity data were recorded at room temperature using graphite-monochromated Mo-K α X-radiation on a Enraf-Nonius CAD4 diffractometer $\left(\theta_{\text {max }}=22^{\circ}\right)$. Accurate lattice parameters were determined from the position of 25 reflections ($20 \leqslant 2 \theta \leqslant 21^{\circ}$). The cell dimensions and Laue group were verified by axial photographs of $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ and $\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]$. The latter was photographed because it is an axis of a possible transformation to a metrically orthorhombic, C-centred cell. The photo of $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ clearly showed the presence of mirror symmetry, while all of the other photographs clearly showed the absence of mirrors. We did not detect any signs of superlattice scattering in any of the photographs. Intensity data were corrected for Lorentz and polarization effects. No absorption correction was applied.

Crystal data. $\mathrm{C}_{81} \mathrm{H}_{62} \mathrm{ClF}_{10} \mathrm{NO}_{4} \mathrm{Pd}_{3} \mathrm{P}_{4} \mathrm{~S}_{2} \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $1 \cdot 0.8 \mathrm{CH}_{2} \mathrm{Cl}_{2}, M=1913.99$, monoclinic, space group $P 2_{1} / c$, $a=14.185(3), b=21.589(4), c=27.440(5) \AA, \beta=104.95(3)^{\circ}$, $U=8118.79 \AA^{3}, Z=4, D_{\mathrm{c}}=1.56 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=3864, \mu=$ $9.6 \mathrm{~cm}^{1}, 10751$ unique data, 5989 observed data $[F>4.0 \sigma(F)]$ for the refinement of 860 parameters, scan method $\omega-2 \theta, w=$ $1 /\left[\sigma^{2}(F)+0.00077 F^{2}\right], \quad R=0.0702, \quad R^{\prime}=0.0849, \quad \Delta / \sigma=$ 0.002 , largest, smallest difference peaks $0.78,-1.01 \mathrm{e} \AA^{-3}$.

Structure solution and refinement. The structure was solved by the use of Patterson and Fourier methods. In the final refinement all non-hydrogen atoms, except the light atoms of the disordered $\mathrm{S}\left(1^{\prime}, 2^{\prime}\right) \operatorname{Pd}\left(3^{\prime}\right)\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-2\right)$ group, the perchlorate anion and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ moiety, were refined with anisotropic thermal parameters. The phenyl groups, i.e. $\mathrm{C}_{6} \mathrm{H}_{5}$ but not $\mathrm{C}_{6} \mathrm{~F}_{5}$, were refined as rigid groups with idealized geometry, as was the six-membered ring of the dimethylbenzylamine ligand. Loose observational restraints were used for the interatomic distances of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule. Blocked full-matrix least-squares calculations were done on a VAX $4000-300$ computer using the SHELXTL-PLUS software package. ${ }^{18}$ Hydrogen atoms were not included in the structural model. Other than the inability to use anisotropic thermal parameters for the C, S and N atoms of the disordered group, we did not observe any specially deleterious effects resulting from the disorder. We conducted one further test for 'missing symmetry' as follows. If the structure pertained to a highersymmetry crystal system, such as orthorhombic, then our data set, consisting of a quadrant, would have at least two equivalents of each unique reflection. Symmetry equivalent
data must have the same value of 2θ. Therefore, we listed F_{o} and F_{c} values at the end of the refinement, sorted by 2θ. A visual inspection of this list did not show any pairing of reflections with similar F_{o} and F_{c} at equal or nearly equal 2θ values.

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain) (PB92-0364) for financial support and the British Council and the Spanish Ministry of Education and Science for an Acciones Integradas grant. E. P. U. thanks the Diputación General de Aragón (D.G.A.) for a post-doctoral fellowship.

References

1 (a) B. Walther, Coord. Chem. Rev., 1984, 60, 67; (b) A. F. M. M. Rahman, C. Ceccarelli, J. P. Oliver, B. Messbauer, H. Meyer and B. Walther, Inorg. Chem., 1985, 24, 2355; (c) M. T. Pinillos, M. P. Jarauta, D. Carmona, L. A. Oro, M. C. Apreda, C. Foces-Foces and F. H. Cano, J. Chem. Soc., Dalton Trans., 1989, 1987.

2 L. Gelmini and D. W. Stephan, Organometallics, 1987, 6, 1515.
3 (a) J. D. Fotheringham and T. A. Stephenson, J. Organomet. Chem., 1985, 284, C12; (b) M. T. Pinillos, M. P. Jarauta, L. A. Oro, A. Tiripicchio and M. Tiripicchio-Camellini, J. Organomet. Chem., 1988, 339, 181; (c) B. Walther, H. Hartung, B. Messbauer, V. Baumeister, M. Maschmeir, D. Dargatz and I. Hetzke, Inorg. Chim. Acta, 1990, 171, 171; (d) K. P. Wagner, R. W. Hess,
P. M. Treichel and J. C. Calabrese, Inorg. Chem., 1975, 14, 1121; (e) B. Walther, B. Messbauer and H. Meyer, Inorg. Chim. Acta, 1979, 37, L525.
4 D. H. M. W. Thewissen, J. Organomet. Chem., 1980, 192, 115.
5 J. Forniés, F. Martinez, R. Navarro, E. P. Urriolabeitia and A. J. Welch, J. Chem. Soc., Dalton Trans., 1993, 2147.

6 G. Geary, Coord. Chem. Rev., 1971, 7, 81.
7 E. Maslowsky, jun., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437 and references therein.
8 (a) J. Forniés, R. Navarro, V. Sicilia and M. Tomás, Inorg. Chem., 1993, 32, 3675; (b) J. Forniés, R. Navarro, V. Sicilia, F. Martínez and A. J. Welch, J. Organomet. Chem., 1991, 408, 425.
9 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091
10 (a) A. J. Deeming, I. P. Rothwell, M. B. Hursthouse and L. New, J. Chem. Soc., Dalton Trans., 1978, 1490; (b) A. J. Deeming, M. N. Meah, P. A. Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1988, 2193, and references therein.
11 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, SI.
12 M. Nardelli, Comput. Chem., 1983, 7, 95.
13 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1985, 4, 1912.
14 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1986, 5, 1581.
15 A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc., 1968, 90, 909.
16 G. E. Hartwell, R. V. Lawrence and M. J. Smas, Chem. Commun., 1970, 912; A. J. Deeming and I. P. Rothwell, J. Organomet. Chem., 1981, 205, 117.
17 A. C. Cope and R. W. Siekman, J. Am. Chem. Soc., 1965, 87, 3272.
18 SHELXTL-PLUS, Software Package for the Determination of Crystal Structure, Release 4.0, Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1990.

Received 28th April 1995; Paper 5/02726H

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

