Synthesis and Characterisation of Homo- and Heterotrinuclear Complexes containing the Triply-bridging Diphenylthiophosphinito $[\mu_3$ -SPPh₂]⁻ Ligand: Molecular Structure of $[Pd_3(\mu_3$ -SPPh_2)_2(C₆F₅)_2(C₆H₄CH₂NMe₂-2)-(PPh_3)_2]ClO₄·0.8CH₂Cl₂[†]

Juan Forniés,^a Francisco Martínez,^a Rafael Navarro,^a Esteban P. Urriolabeitia^a and Alan J. Welch^b ^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain ^b Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, UK

The dinuclear complex $[\{Pd(\mu-SPPh_2)(C_6F_5)(PPh_3)\}_2]$ reacted with the cationic precursors $[PdL(Me_2CO)_2]^+[L = 2 - (dimethylaminomethyl)phenyl-C', N, quinolin-8-ylmethyl-C, N or phenyl-azophenyl-C', N] and with the neutral precursors <math>[M(C_6F_5)_2(thf)_2]$ (M = Pd or Pt, thf = tetra-hydrofuran) to give the corresponding cationic homotrinuclear complexes $[Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_2L - (PPh_3)_2]CIO_4$ (L = $C_6H_4CH_2NMe_2-21$, NC_9H_6CH_2-8 2 or PhN=NC_6H_4 3) and the neutral homo- and hetero-trinuclear complexes $[Pd_2M(\mu_3-SPPh_2)_2(C_6F_5)_4(PPh_3)_2]$ (M = Pd 4 or Pt 5) in which the $[SPPh_2]^-$ group acts as a triply-bridging ligand. Complexes 1–5 have been characterized by spectroscopic methods (IR; ¹H, ¹⁹F and ³¹P-{¹H} NMR) and the molecular structure of $[Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_2(C_6F_5)_2(C_6H_4CH_2NMe_2-2)(PPh_3)_2]CIO_4 1$ has been determined crystallographically. Complex 1-0.8CH_2Cl_2 crystallizes in the monoclinic system, space group $P2_1/c$, a = 14.185(3), b = 21.589(4), c = 27.440(5) Å, $\beta = 104.95(3)^\circ$ and Z = 4. The model refined to final values of R = 0.0702 and R' = 0.0849 for 5989 observed reflections $\{F > 4.0\sigma(F)\}$ and 860 parameters. The structure shows that the $[Pd(\mu_SPPh_2)(C_6F_5)(PPh_3)]_2$ unit behaves as a cyclic bidentate sulfur ligand, co-ordinated to the $[Pd(C_6H_4CH_2NMe_2-2)]^+$ group through the two S atoms. The central Pd_3(SPPh_2)_2 cage contains two μ_3 -SPPh_2 ligands linking the three palladium atoms.

Several co-ordination modes are known for the anionic ligand diphenylthiophosphinito $[SPPh_2]^-$ as is represented in Fig. 1: (a) P-monodentate,¹ (b) S-monodentate,^{1a,2} (c) P,S-chelate ^{1a,3c,4} and (d) di- μ -P,S-bridging,^{1a,3} the last representing the most numerous group, probably due to the stability of the six-membered ring thereby generated.^{1a}

Recently we have reported the synthesis and structural characterization of M^{II} complexes (M = Pd or Pt) containing the anionic group $[SPPh_2]^-$ (diphenylthiophosphinito) acting as a di- μ -P,S-bridging ligand⁵ with the M₂(μ -SPPh₂)₂ core adopting a boat conformation. In these complexes, which contain two µ-SPPh₂ bridges, the sulfur atoms still have free electron pairs and can behave as donor atoms towards electrophilic metal substrates. We report in this paper the synthesis and characterization of the cationic homotrinuclear complexes $[Pd_3(\mu-SPPh_2)_2(C_6F_5)_2L(PPh_3)_2]ClO_4$ [L = 2-(dimethylaminomethyl)phenyl- C^1 , N, quinolin-8-ylmethyl-C, N or phenylazophenyl- C^1 , N] and the neutral homo- and heterotrinuclear complexes $[Pd_2M(\mu-SPPh_2)_2(C_6F_5)_4(PPh_3)_2]$ (M = Pd or Pt), obtained by reaction of $[\{Pd(\mu-SPPh_2)(C_6F_5) (PPh_3)_2$ with the cationic $[PdL(Me_2CO)_2]^+$ or the neutral $[M(C_6F_5)_2(thf)_2]$ (thf = tetrahydrofuran) substrates. These trinuclear derivatives are, as far as we know, the only reported complexes which contain the [SPPh₂]⁻ ligand bridging three metal centres (μ_3 -co-ordination).

Results and Discussion

 $[Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_2L(PPh_3)_2]ClO_4$.—The dinuclear complex $[\{Pd(\mu-SPPh_2)(C_6F_5)(PPh_3)\}_2]$ reacts, in refluxing acetone, with the solvated precursors $[PdL(Me_2CO)_2]ClO_4$ (1:1 molar ratio) giving the corresponding cationic trinuclear derivatives $[Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_2L(PPh_3)_2]ClO_4$ in good

Fig. 1 Different co-ordination modes of the ligand [SPPh₂]

yield. The solvated complexes $[PdL(Me_2CO)_2]ClO_4$ were obtained by treatment of the chloride bridged complexes $[{Pd(\mu-Cl)L}_2]$ with AgClO₄ (molar ratio 1:2) in acetone and were used as acetone solutions without isolation of the solid product. The general process is shown in equation (1).

$$[\{Pd(\mu-SPPh_2)(C_6F_5)(PPh_3)\}_2] + [PdL(Me_2CO)_2]ClO_4 \longrightarrow [Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_2L(PPh_3)_2]ClO_4 \quad (1)$$

$$L$$

$$I \quad C_6H_4CH_2NMe_2-2$$

$$2 \quad NC_9H_6CH_2-8$$

$$3 \quad PhN=NC_6H_4$$

$$(1)$$

† Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Complexes 1-3 gave satisfactory elemental analysis and behave as 1:1 electrolytes in acetone solutions⁶ (see Experimental section). Their mass spectra (positive FAB) indicate their trinuclear nature by the observation of a weak peak (10-15%) corresponding to the molecular peak of the cation: $[Pd_3(\mu_3 - SPPh_2)_2(C_6F_5)_2L(PPh_3)_2]^+ [m/z \ 1746 \ (1),$ 1754(2) or 1793(3)]. Their IR spectra (see Experimental section) show absorptions corresponding to the presence of coordinated C_6F_5 (ref. 7) and cyclometallated L groups,⁸ and of the ClO_4^{-} anion.⁹ It must be noted that the absorption due to $v_{P=S}$ (which in the starting material appears at 570 cm⁻¹) cannot be unambiguously assigned in these complexes since it appears at lower energies and in the same region ($< 550 \text{ cm}^{-1}$) as internal absorptions of the phosphines. This fact is related with the Sco-ordination of the cationic [PdL]⁺ fragment, which results in a decrease in the strength of the P-S bond. Finally, other absorptions due to the [SPPh₂]⁻ and PPh₃ groups are overlapped, precluding an unambiguous assignment. The ³¹P-{¹H} NMR spectra of complexes 1-3 show a similar

pattern of four doublet resonances (two AX systems) corresponding to the expected four chemically inequivalent phosphorus atoms of the molecule, as a result of the presence of the asymmetric [PdL]⁺ group. For complex 1 each phosphorus atom of the μ_3 -SPPh₂ bridge is coupled to the phosphorus of the PPh₃ ligand of the other system; this coupling is not observed in **2** or **3**. The lowest field doublet $[\delta_{P^{A1}} 69.63 (1), 68.58 (2), 65.42$ (3)] can be assigned to the P atom of the $[SPPh_2]^-$ bridge having the S atom trans to the carbon atom of the cyclometallated group (see Fig. 2), by comparison of these values with that found in complex 4 (δ 65.59), in which both S atoms of the [SPPh₂]⁻ bridging ligand are *trans* to a carbon atom (C_6F_5) (see below and Experimental section). Due to the similar values of the coupling constant ${}^{2}J_{\mathbf{P}^{A}-\mathbf{P}^{x}}$, the accurate attribution of the different resonances was made by means of the two-dimensional ³¹P-³¹P correlation (COSY) spectra of these complexes (see Fig. 3).

The ¹⁹F NMR spectrum of complexes 1-3 show four doublets (partially overlapped) in the *ortho*-F region, four complex resonances in the region of *meta*-F atoms and two triplets for the *para*-F atoms. This pattern of signals indicates that both pentafluorophenyl groups are chemically inequivalent and that both halves of each C_6F_5 ligand are inequivalent, as a consequence of the restricted rotation of the C_6F_5 group around the Pd- C_{ipso} bond (Fig. 2).

The ¹H NMR spectrum of complex 1 shows an AB system for the diastereotopic CH_2N protons and two singlets for the methyl groups of the NMe₂ group. In the low-field region, four resonances for the aromatic H atoms of $C_6H_4CH_2NMe_2$ -2 are observed (two doublets and two triplets) together with complex multiplet resonances of the Ph groups. For complex 2, an AB system is observed for the diastereotopic CH_2 -Pd protons. For compound 3, a complex set of resonances was observed in the low-field region, attributed to the aromatic protons of the $C_6H_4N=NPh$ and Ph groups. Finally, upfield shifts of the

Fig. 2 Atomic numbering scheme for ^{19}F and $^{31}P{\{}^{1}H{\}}$ NMR spectral assignment of the cationic complexes 1, 2 and 3

signals due to H_o in 1 and 3 [δ (H_o) 5.85 1, 6.15 3], or to one of the methyl groups of the NMe₂ unit in 1 [δ (Me) 1.29] can be explained as a consequence of the anisotropic shielding¹⁰ of adjacent Ph rings, probably those of the bridging [SPPh₂]⁻ group. Fig. 4 illustrates the disposition of these Ph groups relative to the C₆H₄CH₂NMe₂-2 ligand.

Crystal Structure of [Pd₃(µ₃-SPPh₂)₂(C₆F₅)₂(C₆H₄CH₂- $NMe_2-2-C^1, N)(PPh_3)_2$ CIO₄·0.8CH₂Cl₂.—Part of the cationic complex $[Pd_3(\mu-SPPh_2)_2(C_6F_5)_2(C_6H_4CH_2NMe_2-2) (PPh_3)_2$ ⁺ is disordered in the crystal structure. The following description of the disorder is best understood with reference to Fig. 5(a) and (b). The majority of the atoms of the cation, comprising the bulky fragment $Pd_2(PPh_2)_2(C_6F_5)_2(PPh_3)_2$, the lower part of the molecule in the figures, is not disordered. This fragment has local, non-rigorous two-fold symmetry. The upper portion of the cation, consisting of the less voluminous S atom of the SPPh₂ and $[Pd(C_6H_4CH_2NMe_2-2)]^+$ fragments, and which does not have two-fold symmetry, is disordered about the axis that serves as the local two-fold symmetry element of the bulkier bottom part of the cation. The two disordered congeners have occupancies of 0.65 [molecule A, Fig. 5(a)] and 0.35 [molecule B, Fig. 5(b)]. The connectivity of the cation is the same for the two cases; and it is easy to see that the two orientations of the cation in the crystal are equally favourable energetically, since it is the more expansive bottom

Fig. 3 ³¹P-³¹P COSY NMR spectrum of complex 2

Fig. 4 Schematic structural view of 1

Fig. 5 Molecular structure of the complex 1; molecule A (a), molecule B (b) and skeletal view (c)

half of this moiety that largely determines the crystal packing. Selected bond distances and angles are summarized in Table 1 and atomic coordinates are collected in Table 2.

The trinuclear cation contains three palladium atoms linked by two $[SPPh_2]^-$ bridging ligands. These $[SPPh_2]^-$ ligands are co-ordinated through the P and S atoms to two of the Pd centres [Pd(1) and Pd(2)], in a mutually *cis* head-to-tail arrangement, and through the S atoms to the third Pd centre [Pd(3)].

Each palladium atom is located in a slightly distorted squareplanar environment: both Pd(1) and Pd(2) centres are surrounded by a PPh₃ and a C_6F_5 ligand (mutually *cis*), a phosphorus atom of one bridging [SPPh₂]⁻ ligand and a sulfur atom of the other [SPPh₂]⁻ group; the environment of the Pd(3) centre is formed by the two sulfur atoms of the two bridging [SPPh₂]⁻ ligands and by the C,N-cyclometallated $C_6H_4CH_2NMe_2$ -2 ligand. The skeleton Pd(1)S(1)P(2)Pd(2)-S(2)P(1), which in the starting material [{Pd(µ-SPPh₂)(C₆F₅)-(PPh₃)}₂] displayed a boat conformation,⁵ is now very distorted having lost this form [see Fig. 5(*c*)]. Moreover, the significant loss of planarity of the skeleton Pd(3)-C(75)C(74)C(73)N(1) of the C₆H₄CH₂NMe₂-2 ligand is

remarkable. The $Pd(1, 2)-C(C_6F_5)$, $Pd(1, 2)-P[PPh_3 \text{ or } P(S)Ph_2]$ and $Pd(1, 2)-S(SPPh_2)$ bond distances (see Table 1) are similar to related values found in the literature,¹¹ as are the distances Pd(3)-C and Pd(3)-N to the cyclometallated ligand. Considering first molecule A, the Pd(3)-S(SPPh₂) distances [2.305(10) and 2.500(12) Å] are rather different as a result of the different trans-influence of the nitrogen and carbon atoms of $C_6H_4CH_2NMe_2-2$, but are similar to those found in the related compound $[Pd_3(C_6H_4CH_2NMe_2)_3(pyt)_2]BF_4^{10}$ (pyt = pyridine-2-thione). A similar situation obtains in molecule B, for which the respective distances $Pd(3')-S'(SPPh_2)$ are 2.313(23) and 2.445(22) Å. The Pd(3)-C(75) and Pd(3)-N(1) (molecule A) distances are also slightly different from those found in molecule B [Pd(3')-C(75') and Pd(3')-N(1')] and so also the chelating angle N-Pd-C [C(75)-Pd(3)-N(1) 83.7(8), C(75')-Pd(3')-N(1') 77.3(15)°] although all these values are in the usual range found in other cyclometallated complexes.^{8a,10b} We consider the differences found between molecules A and B to be insignificant from a chemical point of view. These distances are affected by correlation in the refinement, which is also reflected in the relatively high estimated standard deviations of parameters involved in the distorted groups.

The distances between the palladium centres [ranging from 3.578(3) to 4.671(2) Å] indicate that there are no metal-metal bonds. The mean of the value of the P-S distances in the bridging [SPPh₂]⁻ group [2.115(28) Å] is slightly longer than that found in [{Pd(μ -SPPh₂)(C₆F₅)(PPh₃)}₂] [2.048(4) Å].⁵

The dihedral angle between the best least-square planes¹² defined by Pd(1)C(1)P(3)P(1)S(1) and Pd(2)C(7)P(4)P(2)S(2) is 62.1(3)° and the dihedral angles between each one of these planes and the best least-squares plane defined by Pd(3)S(1)S(2)N(1)C(75) [and Pd(3')S(1')S(2')N(1')C(75')] are 115.5(3) [118.3(4)] and 53.2(3) [56.3(5)°], respectively. On the other hand, the torsion angles¹² defined by Pd(1)–S(1)–P(2)–Pd(2) and Pd(1)–P(1)–S(2)–Pd(2) are 63.24 and 73.67° respectively, showing the high degree of distortion undergone by the central core of the molecule after coordination of the [Pd(C₆H₄CH₂NMe₂-2)]⁺ fragment. The corresponding values for molecule B are Pd(1)–P(1)–S(2')–Pd(2) 56.75° and Pd(1)–S(1')–P(2)–Pd(2) 80.82°.

Finally, in the NMR discussion of complex 1, we have remarked on the upfield shielding of both the *ortho*-H and one of the methyl groups of the NMe₂ unit of $C_6H_4CH_2NMe_2$ -2, probably induced by the phenyl groups of the [SPPh₂]⁻ bridging ligands. The calculated distance ¹² between the H atom bonded to C(76) (*ortho*-H, in calculated position) and the centre of the phenyl ring C(25)–C(30) is 3.089 Å and the angle between the line C(76)–H(76) and the perpendicular to this ring is 57.47°. Moreover, the shortest distance between the H atoms bonded to C(80) (methyl group, in calculated positions) and the centre of the phenyl ring C(19)–C(24) is 2.770 Å. In this case, the angle between the line C(80)–H(80) and the perpendicular to this ring is 35.22°. The values of this set of parameters are in the appropriate range to propose anisotropic shielding, consistent with observations of Deeming *et al.*¹⁰

 $[Pd_2M(\mu_3-SPPh_2)_2(C_6F_5)_4(PPh_3)_2]$ (M = Pd or Pt).— As expected, the dinuclear precursor $[{Pd(\mu-SPPh_2)(C_6F_5)-}$

 Table 1
 Selected bond lengths (Å) and angles (°) for complex 1

Pd(1) - P(1)	2.306(4)	Pd(3') - N(1')	2.096(39)	Pd(1) - P(3)	2.362(4)	Pd(3')-C(75')	1.941(34)
Pd(1)-S(1)	2.349(9)	P(1) - S(2)	2.153(14)	Pd(1) - S(1')	2.378(20)	P(1) - S(2')	2.020(28)
Pd(1)-C(1)	2.030(14)	P(1) - C(13)	1.825(9)	Pd(2) - P(2)	2.296(4)	P(1) - C(19)	1.816(9)
Pd(2) - P(4)	2.383(4)	P(2) - S(1)	2.074(11)	Pd(2) - S(2)	2.375(13)	P(2) - S(1')	2.213(19)
Pd(2) - S(2')	2.371(30)	P(2) - C(25)	1.825(9)	Pd(2) - C(7)	2.012(16)	P(2) - C(31)	1.843(11)
Pd(3) - S(1)	2.305(10)	P(3) - C(37)	1.830(10)	Pd(3) - S(2)	2.500(12)	P(3)-C(43)	1.786(10)
Pd(3) - N(1)	2.131(24)	P(3) - C(49)	1.839(10)	Pd(3)C(75)	1.986(17)	P(4) - C(55)	1.821(8)
Pd(3')-S(1')	2.445(22)	P(4)-C(61)	1.797(12)	Pd(3')-S(2')	2.313(23)	P(4)-C(67)	1.827(10)
P(1)-Pd(1)-P(3)	173.9(2)	Pd(2)-P(2)-C(25)	115.3(4)	P(1) - Pd(1) - S(1)	95.4(3)	S(1)-P(2)-C(25)	95.9(4)
P(3)-Pd(1)-S(1)	87.1(3)	S(1')-P(2)-C(25)	96.7(6)	P(1)-Pd(1)-S(1')	87.1(5)	Pd(2)-P(2)-C(31)	112.7(3)
P(3)-Pd(1)-S(1')	94.5(5)	S(1)-P(2)-C(31)	102.7(5)	S(1)-Pd(1)-S(1')	11.0(5)	S(1')-P(2)-C(31)	113.3(7)
P(1)-Pd(1)-C(1)	88.5(4)	C(25)-P(2)-C(31)	106.9(5)	P(3)-Pd(1)-C(1)	89.4(4)	Pd(1)-P(3)-C(37)	114.0(4)
S(1)-Pd(1)-C(1)	175.5(5)	Pd(1)-P(3)-C(43)	111.1(4)	S(1')-Pd(1)-C(1)	173.4(6)	C(37)-P(3)-C(43)	104.6(5)
P(2)-Pd(2)-P(4)	174.7(1)	Pd(1)-P(3)-C(49)	114.3(4)	P(2)-Pd(2)-S(2)	89.7(3)	C(37)-P(3)-C(49)	107.9(6)
P(4)-Pd(2)-S(2)	93.3(3)	C(43)-P(3)-C(49)	103.9(5)	P(2)-Pd(2)-S(2')	96.1(6)	Pd(2)-P(4)-C(55)	116.6(4)
P(4)-Pd(2)-S(2')	87.5(6)	Pd(2)-P(4)-C(61)	111.0(4)	P(2)-Pd(2)-C(7)	86.5(4)	C(55)-P(4)-C(61)	104.1(5)
P(4)-Pd(2)-C(7)	90.2(4)	Pd(2)-P(4)-C(67)	113.4(3)	S(2)-Pd(2)-C(7)	174.6(5)	C(55)-P(4)-C(67)	106.7(5)
S(2')-Pd(2)-C(7)	175.8(6)	C(61)-P(4)-C(67)	103.8(6)	S(1) - Pd(3) - S(2)	90.6(4)	Pd(1)-S(1)-Pd(3)	100.5(4)
S(1)-Pd(3)-N(1)	171.1(7)	Pd(1)-S(1)-P(2)	111.6(4)	S(2)-Pd(3)-N(1)	96.2(6)	Pd(3)-S(1)-P(2)	98.1(4)
S(1)-Pd(3)-C(75)	89.9(6)	Pd(2)-S(2)-Pd(3)	106.3(5)	S(2)-Pd(3)-C(75)	176.2(7)	Pd(2)-S(2)-P(1)	109.4(5)
N(1)-Pd(3)-C(75)	83.7(8)	Pd(3)-S(2)-P(1)	94.3(5)	S(1')-Pd(3')-S(2')	90.0(8)	Pd(1)-S(1')-P(2)	105.8(7)
S(1')-Pd(3')-N(1')	100.0(13)	Pd(3')-S(1')-P(2)	99.7(8)	S(2')-Pd(3')-N(1')	170.0(15)	Pd(2)-S(2')-Pd(3')	102.2(9)
S(1')-Pd(3')-C(75')	174.2(11)	Pd(2)-S(2')-P(1)	114.5(13)	S(2')-Pd(3')-C(75')	92.7(11)	Pd(3')-S(2')-P(1)	94.1(11)
Pd(1)-P(1)-S(2)	113.9(4)	Pd(3)-N(1)-C(73)	103.7(17)	Pd(1)-P(1)-S(2')	122.5(7)	Pd(3)-N(1)-C(80)	118.9(18)
Pd(1)-P(1)-C(13)	114.2(4)	C(73)-N(1)-C(80)	106.8(21)	S(2)-P(1)-C(13)	110.0(5)	Pd(3)-N(1)-C(81)	111.0(16)
S(2')-P(1)-C(13)	100.2(8)	C(73)-N(1)-C(81)	107.2(19)	Pd(1)-P(1)-C(19)	113.2(4)	C(80)-N(1)-C(81)	108.5(24)
S(2)-P(1)-C(19)	98.1(5)	Pd(3')-N(1')-C(73')	106.6(26)	S(2')-P(1)-C(19)	98.4(9)	Pd(3')-N(1')-C(80')	106.4(27)
C(13)-P(1)-C(19)	106.0(5)	C(73')-N(1')-C(80')	122.0(39)	Pd(2)-P(2)-S(1)	121.2(3)	Pd(3')-N(1')-C(81')	112.7(29)
Pd(2)-P(2)-S(1')	111.0(5)	C(73')-N(1')-C(81')	101.6(33)	S(1)-P(2)-S(1')	11.6(6)		

 $(PPh_3)_2$ also reacts with the neutral substrates *cis*-[M(C₆F₅)₂(thf)₂] (M = Pd or Pt) (1:1 molar ratio, CH₂Cl₂) to give the corresponding neutral homo- and hetero-trinuclear complexes [Pd₂M(μ_3 -SPPh₂)(C₆F₅)₄(PPh₃)₂] (M = Pd 4 or Pt 5) respectively [equation (2)].

$$[\{Pd(\mu-SPPh_2)(C_6F_5)(PPh_3)\}_2] + [M(C_6F_5)_2(thf)_2] \longrightarrow [Pd_2M(\mu_3-SPPh_2)(C_6F_5)_4(PPh_3)_2] \quad (2)$$
$$M = Pd 4 \text{ or } Pt 5$$

Complexes 4 and 5 show satisfactory elemental analyses and behave as non-electrolytes in acetone solutions.⁶ Their mass spectra do not provide valuable information in this case, showing only peaks due to fragmentation and redistribution of ligands, but not the molecular peak. The IR spectra show similar features to those described for complexes 1–3: absorptions corresponding to the presence of co-ordinated $C_6F_{5,1}[SPPh_2]^-$ and PPh₃ groups are present.

 C_6F_5 , $[SPPh_2]^-$ and PPh₃ groups are present. The ³¹P-{¹H} NMR spectra of complexes 4 and 5 show the presence of a single AX system, with ¹⁹⁵Pt satellites in the case of 5. This pattern of signals is in agreement with the proposed structure (Fig. 6).

The ¹⁹F NMR spectrum of 4 shows four resonances (two partially overlapped) due to *ortho*-F atoms, two triplets corresponding to the *para*-F atoms and three complex resonances of relative intensity 1:1:2, corresponding to the *meta*-F atoms. A similar pattern of signals can be observed in the ¹⁹F NMR spectrum of 5, the *ortho*-F region showing four well separated signals, two of them with ¹⁹⁵Pt satellites. This pattern is in good agreement with the proposed structure (Fig. 6) and implies: (a) the equivalence of the C₆F₅ groups of the $[Pd(\mu-SPPh_2)(C_6F_5)(PPh_3)]_2$ fragment and the equivalence of the rings of the M(C₆F₅)₂ fragment; (b) the rigidity of the molecule on the NMR time-scale and (c) the restricted rotation of the pentafluorophenyl ligands around the M–C_{*ipsa*} bonds. Full assignment of the resonances in 5 was made through selective irradiation experiments.

Fig. 6 Atomic numbering scheme for ^{19}F and $^{31}P\{^1H\}}$ NMR spectral assignment of the neutral complexes 4 and 5

Experimental

Solvents were dried and distilled under nitrogen by standard methods prior to use. Elemental analyses were carried out on a Perkin-Elmer 240-B microanalyser. Infrared spectra (4000–200 cm⁻¹) were recorded on a Perkin-Elmer 883 infrared spectrophotometer in Nujol mulls between polyethylene sheets. NMR spectra were recorded on a Bruker ARX-300 spectrometer; ¹H NMR spectra were recorded at 300.13 MHz in CDCl₃ using the solvent signal as internal standard; ¹⁹F NMR spectra were recorded at 282.30 MHz and externally referenced to CFCl₃; ³¹P-{¹H} NMR spectra were recorded at 121.49 MHz and externally referenced to H₃PO₄ (85%). Mass spectra were recorded on a V.G. Autospec. Conductivity measurements were carried out in acetone solutions ($\approx 5 \times 10^{4}$ mol dm⁻³) on a Philips PW-9509 digital conductivity meter. The starting compounds [{Pd(μ -SPPh_2)(C₆F₅)(PPh₃)}₂],⁵

x	1
	x

	Atom	X	у	Ζ	Atom	x	У	2
Pa(2) 8 227(1) 8 720(1) 1378(1) 928(1) C(44) 2330 7044 1833 Pa(3) 6 744(2) 718(1) 928(1) C(44) 2336 612(2) 1333 Pa(3) 6 877(2) 138(1) C(44) 2332 644 1270 P13 4 668(3) 7 737(2) 1380(2) C(44) 4 4471 6 636 1579 P13 4 668(3) 7 7 94(4) 138(1) C(50) 4 402 7 934 355 S(1) 7 7 7 94(4) 138(3) C(50) 4 403 6 77 2974 S(2) 8 148(0) 7 634(4) 13330 C(51) 4 403 677 2934 356 S(2) 7 7567 2344 13330 C(55) 1444 844(5) 1055 364 1	Pd(1)	6 303(1)	7 561(1)	2 191(1)	C(42)	3 543	8 389	1 496
Pa(3) 6 6 444(2) 7 118(1) 928(1) C(44) 2 930 7 44 1833 P(1) 7 7 7 7 12 5 12 13 13 13 13 12 13 13 13 12 13 13 13 12 14 14 13 13 14 13 13 13 13 14 14 13 13 14 13 13 14 13 13 14 13 13 14 13 13 14 13 13 14 13 13 14 13 13	Pd(2)	8 227(1)	8 720(1)	1 378(1)	C(43)	3 925(7)	7 056(5)	1 860(4)
Pd(3) 7 056(3) 7 242(2) 959(2) C(45) 2 226 6 612 1 525 P(1) 7 880(3) 7 374(2) 1 308(1) C(47) 3 713 6 204 1 270 P(2) 6 581(3) 8 777(2) 1 308(1) C(47) 3 713 6 204 1 270 P(4) 9 907(3) 8 713(2) 1 380(2) C(48) 4 496(8) 7 509(5) 2 872(3) S(1) 5 994(4) 1 381(3) C(50) 4 775 7 827 3 741 S(1) 5 894(4) 7 634(8) 1 352(8) C(55) 4 702 7 295 3 464 S(2) 7 131(10) 7 617(8) 3 2996(6) C(55) 1 704(6) 8 444(9) 1 953(1) S(2) 7 134(6) 3 394(6) C(55) 1 707 7 997 2 974 C(2) 7 131(10) 7 67(7) 3 464 C(35) 1 977 9 977 2 974 C(2) 7 134(6) 3 994(6) C(55) 1 464 8 380 2 258 </td <td>Pd(3)</td> <td>6 484(2)</td> <td>7 318(1)</td> <td>928(1)</td> <td>C(44)</td> <td>2 930</td> <td>7 044</td> <td>1 833</td>	Pd(3)	6 484(2)	7 318(1)	928(1)	C(44)	2 930	7 044	1 833
P(1) 7 880(3) 7 374(2) 2 147(2) C(46) 2 717 6 192 1 243 P(2) 6 581(3) 8 777(2) 1 308(1) C(47) 3 713 6 204 1 270 P(3) 4 668(3) 7 637(2) 2 38(2) C(48) 4 317 6 36 1 579 S(1) 5 780(7) 7 944(4) 1 381(3) C(50) 4 873 7 934 3 256 S(2) 8 148(9) 7 (244(1)) 1 531(9) C(53) 4 302 7 293 3 444 S(2) 8 148(9) 7 (244(1)) 1 531(9) C(53) 4 302 7 293 3 464 C(2) 7 131(1) 7 617(8) 3 90(6) C(56) 1 0 744(6) 8 810 2 206 C(3) 7 46(11) 6 477(7) 3 548(6) C(59) 1 1 277 7 693 2 206 C(4) 7 46(11) 6 478(7) 3 548(6) C(61) 10 18(8) 8 20(5) 8 971(4) F(1) 7 397(7) 6 707(5) 4 412(3) C(61) <td>Pd(3')</td> <td>7 056(3)</td> <td>7 242(2)</td> <td>959(2)</td> <td>C(45)</td> <td>2 326</td> <td>6 612</td> <td>1 525</td>	Pd(3')	7 056(3)	7 242(2)	959(2)	C(45)	2 326	6 612	1 525
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P(1)	7 880(3)	7 374(2)	2 147(2)	C(46)	2 717	6 192	1 243
$ P(3) = 96(3) = 7.67(2) = 2.23(2) = C(48) = 4.317 = 6.56 = 1.579 \\ P(4) = 997(3) = 8.713(2) = 1.380(2) = C(49) = 4.49(6) = 7.599(5) = 2.872(3) \\ S1148(9) = 7.624(6) = 1.435(5) = C(51) = 4.473 = 7.924 = 3.256 \\ S(2) = 8.148(9) = 7.624(6) = 1.435(5) = C(51) = 4.475 = 7.827 = 3.741 \\ S(2) = 8.377(18) = 7.644(14) = 1.553(9) = C(53) = 4.402 = 6.870 = 3.460 \\ C(1) = 6.681(9) = 7.637(8) = 3.299(6) = C(55) = 0.764(6) = 8.444(5) = 9.553(9) \\ C(2) = 7.131(10) = 7.67(8) = 3.299(6) = C(55) = 0.764(6) = 8.444(5) = 9.573 \\ C(14) = 7.467(11) = 6.650(7) = 3.548(6) = C(55) = 0.764(6) = 8.444(5) = 9.553(6) \\ C(5) = 6.694(12) = 6.478(7) = 3.548(6) = C(58) = 11.277 = 7.607 = 2.548 \\ C(16) = 6.478(7) = 3.548(6) = C(53) = 11.277 = 7.607 = 2.548 \\ C(16) = 6.67(11) = 6.650(7) = 3.057(6) = C(53) = 11.277 = 7.607 = 2.548 \\ F(11) = 6.50(7) = 3.548(6) = C(53) = 11.277 = 7.607 = 2.549 \\ F(11) = 7.319(6) = 8.217(4) = 3.192(3) = C(60) = 10.670 = 7.833 = 2.101 \\ F(2) = 7.80(7) = 7.89(5) = 4.412(3) = C(62) = 9.368 = 8.115 = 4.61 \\ F(3) = 7.376(7) = 6.705(5) = 4.412(3) = C(62) = 9.368 = 8.115 = 4.61 \\ F(3) = 3.737(7) = 6.73(5) = 6.85(3) = C(6) = 1.035 = 7.799 = 6.8 \\ F(5) = 3.987(7) = 6.249(4) = 2.713(3) = C(64) = 10.453 = 7.498 = 1.10 \\ C(7) = 8.93(7) = 6.35(7) = 9.32(8) = C(6) = 1.1035 = 7.948 = 9.39 \\ $	P(2)	6 581(3)	8 777(2)	1 308(1)	C(47)	3 713	6 204	1 270
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P(3)	4 668(3)	7 637(2)	2 238(2)	C(48)	4 317	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 579
St(1) 5 780(7) 7 994(4) 1 381(3) C(30) 4 873 7 934 3 256 S(2) 8 148(9) 7 624(6) 1 435(5) C(51) 4 702 7 295 3 844 S(1) 5 57(18) 7 641(4) 1 553(9) C(53) 3 226 6 870 3 460 C(1) 6 681(9) 7 231(7) 2 908(5) C(54) 4 023 6 977 2 974 C(2) 7 131(10) 7 617(8) 3 299(6) C(55) 1 1 64(4) 8 830 2 258 C(14) 1 46(11) 6 876(8) 3 919(6) C(57) 1 2 071 8 605 2 706 C(5) 6 649(12) 6 478(7) 3 548(6) C(38) 1 1 977 7 993 2 852 C(6) 6 476(1) 6 50(7) 3 057(6) C(63) 1 1 031 8 133 2 101 F(2) 7 80(7) 7 859(5) 4 148(3) C(61) 10 1418(8) 2 209(5) 897 F(4) 6 462(7) 5 901(5) 3 665 7 70 7 198 110 10 118(8) 2 094 1230(1) 10 635 </td <td>P(4)</td> <td>9 907(3)</td> <td>8 713(2)</td> <td>1 380(2)</td> <td>C(49)</td> <td>4 496(8)</td> <td>7 509(5)</td> <td>2 872(3)</td>	P(4)	9 907(3)	8 713(2)	1 380(2)	C(49)	4 496(8)	7 509(5)	2 872(3)
St2) 5 8 148(9) 7 7 7827 3741 St1) 5 940(14) 1325(8) C(2) 4 302 7 827 3844 St2) 8 377(18) 7 7 941(14) 1533(9) C(3) 3926 6870 3460 C(1) 6.81(9) 7 231(7) 2996(5) C(3) 10 764(6) 8444(5) 1955(3) C(2) 7.131(10) 7.617(8) 3.299(6) C(3) 10 764(6) 2705 C(5) 6.694(12) 6.478(7) 3.548(6) C(39) 11.277 7.907 2.528 C(5) 5.994(12) 7.859(5) 4.148(3) C(6) 10.118(8) 8.209(5) 897(4) F(1) 7.319(6) 8.217(4) 3.653(3) C(6) 10.18(8) 8.209(5) 897(4) F(4) 6.462(7) 5.901(5) 3.653(3) C(6) 10.317 9.465 729 68 F(4) 6.462(7) 5.901(5) 3.665(3) C(6) 10.035 7948 939<	S (1)	5 780(7)	7 994(4)	1 381(3)	C(50)	4 873	7 934	3 256
S(1) 5 949(14) 7 843(8) 1 325(8) C(2) 4 302 7 295 3 844 S(2) 8 377(18) 7 644(14) 1 553(9) C(3) 3 926 6 877 2 974 C(1) 6 681(9) 7 231(7) 2 908(5) C(3) 1 7 64(6) 8 444(5) 1 955(3) C(2) 7 131(10) 7 617(8) 3 794(6) C(3) 1 1464 8 830 2 258 C(3) 6 67(7) 1 2071 8 605 2 706 C(5) 1 6 644(12) 6 478(7) 3 548(6) C(3) 1 1 177 7 607 2 549 F(1) 7 319(6) 8 217(4) 3 192(3) C(6) 1 0 1670 7 833 2 101 F(2) 7 800(7) 7 859(5) 4 142(3) C(6) 1 10 18(8) 8 299(5) 897(4) F(3) 7 376(7) 6 540(4) 2 713(3) C(6) 1 10 33 7 593 546 C(7) 8 138(12) 9 932(9) 789(8) C(6) 1 10 35 7 98 84 F(3) 8 94(1) 1 235(7) C 6(5) 1 10 35 7 98 7	S(2)	8 148(9)	7 624(6)	1 435(5)	C(51)	4 775	7 827	3 741
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S(1')	5 949(14)	7 843(8)	1 325(8)	C(52)	4 302	7 295	3 844
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S(2')	8 377(18)	7 644(14)	1 553(9)	C(53)	3 926	6 870	3 460
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	6 681(9)	7 231(7)	2 908(5)	C(54)	4 0 2 3	6 977	2 974
$ \begin{array}{c} C(3) & 7 \ 362(11) & 7 \ 436(8) & 3 \ 994(6) & C(56) & 11 \ 464 & 8 \ 830 & 2 \ 258 \\ C(5) & 6 \ 694(12) & 6 \ 478(7) & 3 \ 548(6) & C(58) & 11 \ 977 & 7 \ 973 & 2 \ 852 \\ F(1) & 7 \ 319(6) & 8 \ 217(4) & 3 \ 192(3) & C(60) & 10 \ 670 & 7 \ 833 & 2 \ 101 \\ F(3) & 7 \ 376(7) & 6 \ 705(5) & 4 \ 142(3) & C(62) & 9 \ 368 & 8 \ 115 & 461 \\ F(3) & 7 \ 376(7) & 6 \ 705(5) & 4 \ 142(3) & C(62) & 9 \ 368 & 7 \ 498 & 110 \\ F(3) & 7 \ 376(7) & 6 \ 705(5) & 4 \ 142(3) & C(62) & 9 \ 368 & 7 \ 498 & 110 \\ F(3) & 7 \ 376(7) & 6 \ 705(5) & 4 \ 142(3) & C(62) & 9 \ 368 & 7 \ 498 & 110 \\ F(3) & 7 \ 376(7) & 6 \ 290(5) & 3 \ 685(3) & C(63) & 9 \ 366 & 7 \ 798 & 8 \ 108 \\ F(3) & 8 \ 100 \ 9 \ 644(7) & 12 \ 27(7) & C \ 665 & 11 \ 033 & 7 \ 498 & 100 \\ F(3) & 8 \ 100 \ 9 \ 644(7) & 12 \ 27(7) & C \ 665 & 11 \ 035 & 7 \ 498 & 100 \\ F(6) & 8 \ 138(12) & 9 \ 932(9) & 789(8) & C(66) & 11 \ 035 & 7 \ 948 & 939 \\ C(9) & 8 \ 175(13) & 10 \ 557(10) & 72 \ 28(9) & C(67) & 10 \ 351(7) & 9 \ 465(4) & 12 \ 20(4) \\ C(110) & 8 \ 205(14) & 10 \ 498(10) & 1111(12) & C(68) & 10 \ 577 & 9 \ 365 & 770 \\ C(11) & 8 \ 234(12) & 10 \ 709(9) & 1 \ 593(11) & C(9) & 10 \ 878 & 10 \ 150 & 655 \\ F(6) & 8 \ 150(7) & 9 \ 576(5) & 407(4) & C(71) & 10 \ 727 & 10 \ 355 & 14 \ 458 \\ F(8) & 8 \ 262(9) & 11 \ 550(5) & 10 \ 66(6) & N(1) & 6 \ 955(16) & 6 \ 596(10) & 516(8) \\ F(10) & 8 \ 371(8) & 9 \ 832(5) & 21 \ 47(4) & C(74) & 51 \ 56(13) & 6 \ 537(4) & 376(1) \\ F(10) & 8 \ 371(8) & 9 \ 832(5) & 21 \ 47(4) & C(77) & 5 \ 300 & 7 \ 284 & 24 \\ C(15) & 9 \ 651 & 8 \ 150(7) & 6 \ 555(4) & 21 \ 59(4) & C(77) & 5 \ 300 & 7 \ 784(2) & 6 \ 382(1) & 00(4) \\ C(21) & 7 \ 642 & 5 \ 433 & 199 & C(77) & 5 \ 300 & 7 \ 784(2) & 6 \ 447(11) & 377(10) \\ C(21) & 7 \ 642 & 5 \ 433 & 199 & C(77) & 7 \ 812 & 6 \ 638 & C(76) & 4 \ 344 & 7 \ 489 & 370 \\ C(13) & 8 \ 815(6) & 7710(4) & 2664(3) & C(77) & 5 \ 300 & 7 \ 784 & 24 \\ C(16) & 9 \ 955(1) & -7144 & 491 \\ C(14) & 9 \ 035 & 8 \ 300 & 2 \ 555(1) & 2 \ 175(1) & -7144 & 491 \\ C(14) & 9 \ 035 & 8 \ 300 & 2 \ 235(1) & -715(1) & -7144 $	C(2)	7 131(10)	7 617(8)	3 299(6)	C(55)	10 764(6)	8 444(5)	1 955(3)
$\begin{array}{c} C(4) & 7.146(11) & 6.876(8) & 3.919(6) & C(57) & 12.071 & 8.055 & 2.706 \\ C(5) & 6.694(12) & 6.478(7) & 3.548(6) & C(58) & 11.977 & 7.907 & 2.549 \\ C(6) & 6.476(11) & 6.650(7) & 3.057(6) & C(59) & 11.277 & 7.607 & 2.549 \\ F(1) & 7.319(6) & 8.217(4) & 3.192(3) & C(60) & 10.670 & 7.833 & 2.101 \\ F(4) & 6.462(7) & 7.859(5) & 4.143(3) & C(61) & 10.118(8) & 8.209(5) & 897(4) \\ F(4) & 6.462(7) & 5.901(5) & 3.663(3) & C(62) & 9.368 & 8.115 & 4.64 \\ F(4) & 6.462(7) & 5.901(5) & 3.663(3) & C(63) & 9.356 & 7.759 & 68 \\ F(5) & 5.987(7) & 6.249(4) & 2.713(3) & C(64) & 10.453 & 7.498 & 110 \\ C(7) & 8.180(10) & 9.644(7) & 1.275(7) & C(65) & 11.203 & 7.593 & 5.46 \\ C(8) & 8.138(12) & 9.922(9) & 7.89(8) & C(66) & 11.035 & 7.593 & 5.46 \\ C(10) & 8.205(14) & 10.948(10) & 1.111(12) & C(68) & 10.577 & 9.365 & 7.70 \\ C(11) & 8.205(14) & 10.948(10) & 1.111(12) & C(68) & 10.577 & 9.365 & 7.70 \\ C(11) & 8.204(12) & 10.957(10) & 1.593(11) & C(69) & 10.878 & 10.150 & 6.55 \\ C(12) & 8.268(11) & 10.046(8) & 1.704(10) & C(70) & 10.953 & 10.635 & 9.99 \\ F(7) & 8.205(8) & 10.800(6) & 2.86(5) & C(72) & 10.426 & 9.950 & 1.574 \\ F(8) & 8.202(9) & 11.590(5) & 2.014(6) & C(73) & 6.098(21) & 6.595(16) & 6.596(10) & 5.16(8) \\ F(9) & 8.348(9) & 11.066(5) & 2.014(6) & C(73) & 5.16(3) & 6.533(8) & 2.66(7) \\ C(13) & 8.815(6) & 7.10(4) & 2.664(3) & C(75) & 5.172 & 7.114 & 4.91 \\ C(14) & 9.035 & 8.340 & 2.658 & C(16) & 4.344 & 7.489 & 370 \\ C(15) & 9.651 & 8.615 & 3.082 & C(77) & 3.500 & 7.284 & 2.4 \\ C(16) & 10.049 & 8.262 & 3.511 & C(78) & 3.484 & 6.704 &202 \\ C(18) & 9.213 & 7.357 & 3.093 & C(80) & 7.795(24) & 6.787(20) & 3.78(10) \\ C(19) & 8.16(7) & 6.552(4) & 2.139(4) & C(78) & 3.484 & 6.704 &202 \\ C(18) & 9.213 & 7.357 & 3.093 & C(77) & 9.463 & 6.172 & 6.53 \\ C(24) & 9.311 & 6.373 & 2.190 & C(77) & 9.463 & 6.172 & 6.53 \\ C(24) & 9.311 & 6.373 & 2.190 & C(77) & 9.463 & 6.172 & 6.53 \\ C(24) & 9.131 & 6.373 & 2.190 & C(77) & 9.463 & 6.172 & 6.53 \\ C(24) & 9.131 & 6.373 & 2.190 & C(77) & 9.463 & 6.172 & 6.53 \\ C(24) & 9.351 & 5.752 & 2.135$	C(3)	7 362(11)	7 436(8)	3 794(6)	C(56)	11 464	8 830	2 258
$ \begin{array}{c} C(5) & 6.694(12) & 6.478(7) & 3.548(6) & C(38) & 11.977 & 7.993 & 2.852 \\ F(1) & 7.319(6) & 8.217(4) & 3.192(3) & C(60) & 10.670 & 7.833 & 2.101 \\ F(3) & 7.376(7) & 6.705(5) & 4.142(3) & C(60) & 10.670 & 7.833 & 2.101 \\ F(3) & 7.376(7) & 6.705(5) & 4.142(3) & C(62) & 9.368 & 8.115 & 461 \\ F(4) & 6.462(7) & 5.901(5) & 3.685(3) & C(63) & 9.368 & 7.759 & 6.8 \\ F(5) & 5.987(7) & 6.249(4) & 2.713(3) & C(64) & 10.453 & 7.498 & 1.10 \\ F(7) & 8.180(10) & 9.644(7) & 1.275(7) & C(65) & 11.203 & 7.993 & 5.46 \\ C(8) & 8.138(12) & 9.932(9) & 789(8) & C(66) & 11.035 & 7.948 & 9.39 \\ C(10) & 8.205(14) & 10.948(10) & 1.111(12) & C(68) & 10.577 & 9.565 & 7.70 \\ C(11) & 8.205(14) & 10.948(10) & 1.111(12) & C(68) & 10.577 & 9.565 & 7.70 \\ C(11) & 8.205(14) & 10.946(8) & 1.704(10) & C(70) & 10.933 & 10.635 & 9.99 \\ F(6) & 8.150(7) & 9.576(5) & 407(4) & C(71) & 10.727 & 10.353 & 1.458 \\ F(7) & 8.205(8) & 10.800(6) & 286(5) & C(72) & 10.426 & 9.950 & 1.574 \\ F(8) & 8.262(9) & 11.550(5) & 1.066(6) & N(1) & 6.955(16) & 6.996(10) & 5.16(8) \\ F(10) & 8.371(8) & 9.832(5) & 2.147(4) & C(74) & 5.156(13) & 6.333(8) & 266(7) \\ F(11) & 8.371(8) & 9.832(5) & 2.147(4) & C(77) & 5.162 & 7.114 & 491 \\ C(14) & 9.035 & 8.340 & 2.658 & C(76) & 4.344 & 7.489 & 370 \\ C(15) & 9.651 & 8.615 & 3.082 & C(77) & 3.300 & 7.284 & 2.4 \\ C(16) & 10.049 & 8.262 & 3.511 & C(78) & 3.484 & 6.704 &202 \\ C(17) & 9.810 & 7.632 & 3.517 & C(78) & 3.484 & 6.704 &202 \\ C(17) & 9.810 & 7.632 & 3.517 & C(78) & 3.484 & 6.704 &202 \\ C(18) & 9.213 & 7.357 & 3.093 & C(80) & 7.795(24) & 6.247(13) & 7.581(2) \\ C(21) & 7.422 & 5.493 & 1.979 & C(73) & 6.473(24) & 6.783(21) &881(6) \\ C(21) & 7.422 & 5.493 & 1.979 & C(73) & 6.473(24) & 6.783(21) &881(7) \\ C(21) & 7.422 & 5.493 & 1.979 & C(73) & 6.473(24) & 6.783(21) &881(7) \\ C(21) & 7.422 & 5.493 & 1.979 & C(73) & 6.473(24) & 6.783(21) &881(7) \\ C(21) & 7.422 & 5.493 & 1.979 & C(73) & 6.473(24) & 6.783(21) &881(7) \\ C(21) & 7.422 & 5.493 & 1.979 & C(73) & 6.473(24) & 6.783(21) &881(7) \\ C(21) & 7.4$	C(4)	7 146(11)	6 876(8)	3 919(6)	C(57)	12 071	8 605	2 706
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	6 694(12)	6 478(7)	3 548(6)	C(58)	11 977	7 993	2 852
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(6)	6 476(11)	6 6 50(7)	3 057(6)	C(59)	11 277	7 607	2 549
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(1)	7 319(6)	8 217(4)	3 192(3)	C(60)	10 670	7 833	2 101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F(2)	7 800(7)	7 859(5)	4 148(3)	C(61)	10 118(8)	8 209(5)	89/(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(3)	/ 3/6(/)	6 705(5)	4 412(3)	C(62)	9 368	8 115	461
	F(4)	6 462(7)	5 901(5)	3 685(3)	C(63)	9 5 3 6	7 759	68
$ \begin{array}{c} C(7) & 8 \ 180(10) & 9 \ 944(7) & 1275(7) & C(8) & 11 \ 103 & 7 \ 393 & 548 \\ C(8) & 8 \ 138(12) & 9 \ 932(9) & 789(8) & C(66) & 11 \ 035 & 7948 & 939 \\ C(9) & 8 \ 175(13) & 10 \ 557(10) & 728(9) & C(67) & 10 \ 351(7) & 9 \ 465(4) & 1 \ 230(4) \\ C(10) & 8 \ 205(14) & 10 \ 948(10) & 1111(12) & C(68) & 10 \ 577 & 9 \ 565 & 770 \\ C(11) & 8 \ 234(12) & 10 \ 709(9) & 1 \ 593(11) & C(69) & 10 \ 878 & 10 \ 150 & 655 \\ F(7) & 8 \ 208(11) & 10 \ 046(8) & 1704(10) & C(70) & 10 \ 953 & 10 \ 635 & 999 \\ F(6) & 8 \ 150(7) & 9 \ 576(5) & 407(4) & C(71) & 10 \ 727 & 10 \ 535 & 1 \ 458 \\ F(7) & 8 \ 206(8) & 10 \ 800(6) & 286(5) & C(72) & 10 \ 426 & 9 \ 950 & 1 \ 574 \\ F(8) & 8 \ 262(9) & 11 \ 500(5) & 1 \ 066(6) & N(1) & 6 \ 955(16) & 6 \ 596(10) & 516(8) \\ F(9) & 8 \ 348(9) & 11 \ 066(5) & 2 \ 014(6) & C(73) & 6 \ 098(21) & 6 \ 147(11) & 397(10) \\ C(13) & 8 \ 815(6) & 7 \ 710(4) & 2 \ 664(3) & C(75) & 5 \ 172 & 7 \ 114 & 491 \\ C(14) & 9 \ 035 & 8 \ 340 & 2 \ 658 & C(76) & 4 \ 344 & 7 \ 489 & 370 \\ C(15) & 9 \ 651 & 8 \ 615 & 3 \ 082 & C(77) & 3 \ 500 & 7 \ 284 & 24 \\ C(16) & 10 \ 049 & 8 \ 262 & 3 \ 511 & C(78) & 3 \ 484 & 6 \ 704 & -202 \\ C(18) & 9 \ 213 & 7 \ 357 & 3 \ 093 & C(80) & 7 \ 795(24) & 6 \ 247(13) & 755(12) \\ C(20) & 7 \ 422 & 6 \ 115 & 2 \ 033 & N(1) & 6 \ 640(30) & 6 \ 787(20) & 378(16) \\ C(21) & 7 \ 642 & 5 \ 493 & 1 \ 979 & C(73) & 6 \ 433(24) & 6 \ 783(21) & -83(17) \\ C(23) & 9 \ 351 & 5 \ 752 & 2 \ 135 & C(77) & 7 \ 871 & 6 \ 690 & 685 \\ C(24) & 9 \ 131 & 6 \ 373 & 2 \ 190 & C(76') & 8 \ 819 & 6 \ 532 & 912 \\ C(25) & 5 \ 831(7) & 8 \ 999(5) & 687(3) & C(77') & 9 \ 363 & 6 \ 172 & 6 \ 535 & 912 \\ C(25) & 5 \ 831(7) & 8 \ 999(5) & 687(3) & C(77') & 9 \ 363 & 6 \ 172 & 6 \ 535 & 912 \\ C(26) & 6 \ 171 & 8 \ 904 & 259 & C(77') & 7 \ 950 & 6 \ 119 & -61 \\ C(28) & 4 \ 590 & 9 \ 191 & -270 & C(80') & 5 \ 781(6) & 6 \ 690 & 685 \\ C(26) & 6 \ 171 & 8 \ 904 & 259 & C(77') & 9 \ 363 & 6 \ 172 & 6 \ 535 & 912 \\ C(25) & 5 \ 831(7) & 8 \ 999(5) & 687(3) & C(77') & 9 \ 363 & 6 \ 172 & 6 \ 633(1) & -244(1) \\ C(33) &$	F(3)	5 98/(/)	0 249(4)	2 / 13(3)	C(64)	10 455	7 498	546
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	C(I)	8 180(10)	9 044(7)	1 2/3(7)	C(63)	11 203	7 393	020
$ \begin{array}{c} C(4) & 3 173(15) & 10 39(10) & 123(7) & $	C(8)	8 138(12) 8 175(12)	9 952(9)	709(0)	C(60)	10 251(7)	0 465(4)	1 230(4)
	C(9)	8 205(14)	10.337(10) 10.048(10)	1 1 1 1 (12)	C(07)	10 551(7)	9 405(4)	770
	C(10)	8203(14) 8234(12)	10 700(0)	1 503(11)	C(69)	10 878	10 1 50	655
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	8 268(11)	10 046(8)	1.704(10)	C(70)	10 953	10 635	999
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E(12)	8 1 50(7)	9 576(5)	407(4)	C(71)	10 727	10 535	1 4 5 8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F(7)	8 205(8)	10 800(6)	286(5)	C(72)	10 426	9 9 50	1 574
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(8)	8 262(9)	11 550(5)	1 066(6)	N(1)	6 955(16)	6 596(10)	516(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(9)	8 348(9)	11 066(5)	2 014(6)	C(73)	6 098(21)	6 147(11)	397(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(10)	8 371(8)	9 832(5)	2 147(4)	C(74)	5 1 56(13)	6 533(8)	266(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	8 815(6)	7 710(4)	2 664(3)	C(75)	5 172	7 114	491
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	9 035	8 340	2 658	C(76)	4 344	7 489	370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	9 651	8 615	3 082	C(77)	3 500	7 284	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	10 049	8 262	3 511	C(78)	3 484	6 704	- 202
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	9 830	7 632	3 517	C(79)	4 312	6 328	-80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	9 213	7 357	3 093	C(80)	7 795(24)	6 247(13)	755(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	8 167(7)	6 555(4)	2 139(4)	C(81)	7 076(19)	6 828(13)	30(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	7 422	6 115	2 033	N(1')	6 040(30)	6 787(20)	378(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	7 642	5 493	1 979	C(73')	6 473(24)	6 783(21)	- 83(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	8 606	5 311	2 030	C(74')	7 426(19)	6 482(16)	199(12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	9 351	5 752	2 135	C(75')	7871	6 690	685
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	9 131	6 373	2 190	C(76')	8 8 3 9	6 535	912
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	5 831(7)	8 999(5)	687(3)	C(77)	9 363	61/2	653
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	61/1	8 904	259	C(78)	8 919	5 964	100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(27)	5 550	9 000	-220	C(79)	7 930	6 140(27)	01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	4 390	9 191	-270	C(80')	5/41(42) 5/002(22)	7 167(21)	176(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	4 2 3 0	9 280	637	C(01)	5 167(6)	A 653(A)	1.224(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	6 281(7)	9 317(4)	1 767(3)		6 037(18)	4 292(12)	1 349(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	5 896	9 907	1 638	O(2)	5355(17)	5 175(12)	1.5(2(9))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	5 777	10 312	2 014	O(2)	4 321(18)	4 348(11)	1 240(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	6 044	10 127	2 518	O(4)	4 939(17)	4 865(11)	741(10)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35)	6 429	9 537	2 646	C(82)	8 380(21)	5 512(36)	-924(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(36)	6 547	9 1 3 2	2 271	Cl(2)	9 036(24)	5 089(15)	-1244(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(37)	4 077(7)	8 369(4)	2 000(4)	Cl(3)	9 133(24)	5 759(15)	-371(11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(38)	4 144	8 896	2 302	C(82')	2 193(80)	5 931(25)	-242(14)
C(40) 3 143 9 462 1 596 Cl(3') 2 524(30) 6 638(17) -415(16) C(41) 3 076 8 936 1 294 -415(16) -415(16)	C(39)	3 677	9 442	2 100	Cl(2')	1 852(30)	5 472(16)	- 761(17)
C(41) 3 076 8 936 1 294	C(40)	3 143	9 462	1 596	Cl(3')	2 524(30)	6 638(17)	-415(16)
	C(41)	3 076	8 936	1 294				

 $\begin{bmatrix} M(C_6F_5)_2(thf)_2 \end{bmatrix} (M = Pd \text{ or } Pt),^{13,14} \\ \begin{bmatrix} Pd(\mu-Cl)(C_6H_4-Cl)(NC_9H_6CH_2-2) \end{bmatrix}_2 \end{bmatrix}^{15} \\ \begin{bmatrix} Pd(\mu-Cl)(NC_9H_6CH_2-8) \end{bmatrix}_2 \end{bmatrix}^{16} \\ and \\ \begin{bmatrix} Pd-(\mu-Cl)(PhN=NC_6H_4) \end{bmatrix}_2 \end{bmatrix}^{17} \\ were prepared according to published procedures.$

Synthesis of Cationic Complexes $[Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_2L(PPh_3)_2]ClO_4$ (L = $C_6H_4CH_2NMe_2-2$ 1, $NC_9H_6CH_2-8$ 2 or PhN= NC_6H_4 3).—As a general method, we describe here the

synthesis of $[Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_2(C_6H_4CH_2NMe_2-2)-(PPh_3)_2]ClO_4$ 1: to a suspension of $[\{Pd(\mu-Cl)(C_6H_4CH_2-NMe_2-2)\}_2]$ (0.137 g, 0.249 mmol) in acetone (20 cm³) was added AgClO_4 (0.103 g, 0.498 mmol). The resulting mixture was stirred for 45 min at room temperature with exclusion of the light and then filtered. To the freshly prepared solution of $[Pd(C_6H_4CH_2NMe_2-2)(Me_2CO)_2]ClO_4$ was added $[\{Pd(\mu-SPPh_2)(C_6F_5)(PPh_3)\}_2]$ (0.750 g, 0.498 mmol) suspended in

acetone (30 cm³) and then heated at the reflux temperature. The initially yellow suspension gradually dissolved and its colour changed, giving an orange solution after 45 min refluxing. The resulting solution was cooled and the solvent removed to small volume (≈ 4 cm³). Addition of Et₂O (30 cm³) and stirring gave 1 as an orange solid, 0.690 g (75% yield) (Found: C, 52.45; H, 3.50; N, 0.70. C₈₁H₆₂ClF₁₀NO₄P₄Pd₃S₂ requires C, 52.70; H, 3.40; N, 0.75%). IR (cm⁻¹): 1580m (L), 1505vs (C₆F₅), 1100vs (ClO₄⁻¹), 956vs (C₆F₅), 845s (L), 782s (C₆F₅, X-sensitive), 623vs (ClO₄⁻¹), 523vs, 520vs, 510vs and 490vs [(SPPh₂)⁻¹ + PPh₃]. $\Lambda_{\rm M} = 106 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$. NMR (room temp.): ¹H, δ 8.21–6.93 (m, 50 H, Ph), 6.87 (d, 1 H, H⁶ of L, ³J_{H⁶-H⁶} = 7.22), 6.81 (t, 1 H, H^c of L), 6.25 (t, 1 H, H^d of L, ³J_{H^c-H^d} = 7.10), 5.85 (d, 1 H, H_o of L, ³J_{H⁶-H⁶} = 7.80), 3.74, 3.18 (AB system, 2 H, CH₂N, ²J_{H⁻¹-H⁶} = 14.87 (d, 1 F, F_o), -115.00 (d, 1 F, F_o), -115.23 (d, 1 F, F_o), -115.36 (d, 1 F, F_o), -159.07 (t, 1 F, F_p), -159.14 (t, 1 F, F_p), -160.92 (m, 1 F, F_m), -161.16 (m, 1 F, F_m), -161.36 (m, 1 F, F_m) and -161.58 (m, 1 F, F_m); ³¹P-{¹H}, δ 69.63 (dd, 1 P, P^{A1}–S *trans* C, ²J_{P^{A1}–P^{X1}} = 468, ³J_{P^{A1}–P^{X2}} = 10.5), 56.24 (dd, 1 P, P^{A2}–S *trans* N, ²J_{P^{A2}–P^{X2}} = 472, ³J_{P^{A2}} = ^{x^{X2}} = 10.5 Hz), 16.57 (dd, 1 P, P^{X1}Ph₃) and 15.87 (dd, 1 P, P^{X2}Ph₃).

Complexes 2 and 3 were prepared similarly. Complex 2. The complex [{ $Pd(\mu-Cl)(NC_9H_6CH_2-8)$ }] (0.142 g, 0.249 mmol) was treated with AgClO₄ (0.103 g, 0.498 mmol) and [{Pd(μ - $SPPh_2(C_6F_5)(PPh_3)_2$ (0.750 g, 0.498 mmol) to give 2 (0.646 g, 70% yield) as a pale-orange solid (Found: C, 52.90; H, 3.55; g, 70_{6}° yield as a pac-orange solid (Found: C, 52.50, 11, 5.55, N, 0.85. $C_{82}H_{58}ClF_{10}NO_4P_4Pd_3S_2$ requires C, 53.10; H, 3.15; N, 0.75%). IR (cm⁻¹): 1635m, 1615m, 1590m (L), 1500vs (C_6F_5), 1100vs (ClO_4^{-1}), 955vs (C_6F_5), 830s (8-mq), 775s (C_6F_5 , X-sensitive), 623vs (ClO_4^{-1}), 525vs, 510vs, 505vs and 485vs [(SPPh₂)⁻ + PPh₃]. $\Lambda_M = 94 \ \Omega^{-1} \ cm^2 \ mol^{-1}$. NMR (room temp.): ¹H, δ 8.50–6.76 (m, aromatics) and 3.12, 2.97 (AB system, 2 H, CH₂Pd, ${}^{2}J_{H^{3}-H^{5}} = 13.8$ Hz); 19 F, $\delta - 114.53$ (m, $2 F, F_o$, $-115.15 (d, 1 F, F_o)$, $-116.26 (d, 1 F, F_o)$, -159.25 (t, 1) $1F, F_p$, -159.29 (t, $1F, F_p$), -160.87 (m, $1F, F_m$), -161.27 (m, $1F, F_m$), -161.63 (m, $1F, F_m$) and -162.17 (m, $1F, F_m$); ${}^{31}P_{1}$ { $}^{1}H_{1}$, δ 68.58 (d, $1P, P^{A_1}-S$ trans C, ${}^{2}J_{P^{A_1}-P^{X_1}}=$ 468 Hz), $P^{X_1}Ph_3$), 16.34 (d, 1 P, $P^{X_2}Ph_3$). Complex 3. The complex $[{Pd(\mu-Cl)(PhN=NC_6H_4)}_2]$ (0.149 g, 0.229 mmol) was treated with $AgClO_4$ (0.096 g, 0.459 mmol) and [{Pd(μ -SPPh₂)(C₆F₅)- PPh_{3} [0.692 g, 0.459 mmol) to give 3 (0.531 g, 61% yield) as a pale-orange solid (Found: C, 53.20; H, 3.25; N, 1.45. $C_{84}H_{59}CIF_{10}N_2O_4P_4Pd_3S_2$ requires C, 53.30; H, 3.15; N, 1.50%). IR (cm⁻¹): 1570m (L), 1500vs (C₆F₅), 1090vs (ClO₄⁻¹), 955vs (C₆F₅), 780s (C₆F₅, X-sensitive), 765s (L), 623vs (ClO₄), 520vs, 505vs, 480vs [(SPPh₂)⁻ + PPh₃]. $\Lambda_{\rm M} = 105 \ \Omega^{-1}$ cm² mol⁻¹. NMR (room temp.): ¹H, δ 8.02–6.59 (m, aromatics) and 6.15 (d, 1 H, H_o, ³J_{H-H} = 7.27 Hz); ¹⁹F, δ – 114.14 (d, 1 F, F_o , -114.25 (d, 1 F, F_o), -115.25 (d, 1 F, F_o), -115.35 (d, 1 F, F_{o} , -158.53 (t, 2 F, 2 F_p), -160.68 (m, 1 F, F_m), -160.76 (m, 1 F, F_m), -161.10 (m, 1 F, F_m) and -161.49 (m, 1 F, F_m); ³¹P-{¹H}, δ 65.42 (d, 1 P, P^{A1}–S trans C, ²J_{P^A1} = 468), 54.45 (d, 1 P, P^{A_2} -S trans N, ${}^2J_{P^{A_2}-P^{X_2}}$ = 464 Hz), 17.43 (d, 1 P, $P^{X_1}Ph_3$) and 16.79 (d, 1 P, $P^{X_2}Ph_3^{-r}$).

Synthesis of $[Pd_2M(\mu_3-SPPh_2)_2(C_6F_5)_4(PPh_3)_2]$ (M = Pd 4 or Pt 5).—Complex 4. To a solution of $[\{Pd(\mu-SPPh_2)(C_6F_5)-PPh_3)\}_2]$ (0.413 g, 0.274 mmol) in CH₂Cl₂ (25 cm³) was added $[Pd(C_6F_5)_2(thf)_2]$ (0.160 g, 0.274 mmol). The resulting pale yellow solution was stirred at room temperature for 45 min and then evaporated to dryness. Addition of *n*-hexane (20 cm³) and stirring gave $[Pd_3(\mu_3-SPPh_2)_2(C_6F_5)_4(PPh_3)_2]$ 4 (0.422 g, 79% yield) as a pale yellow solid (Found: C, 51.45; H, 2.55. $C_{84}H_{50}F_{20}P_4Pd_3S_2$ requires C, 51.85; H, 2.60%). IR (cm⁻¹): 1500vs (C₆F₅), 960vs (C₆F₅), 800s, 790s, 780s (C₆F₅, Xsensitive), 510vs, 505vs and 490vs $[(SPPh_2)^- + PPh_3]$. NMR (room temp.): ¹⁹F, δ –110.71 (d, 4 F, F_o), –114.92 (d, 2 F, F_o), -115.60 (d, 2 F, F_o), –160.34 (t, 2 F, F_p), –161.30 (m, 2 F, F_m), -162.44 (m, 2 F, F_m), -163.26 (t, 2 F, F_p) and -165.01 (m, 4 F, F_m); ${}^{31}P$ -{¹H}, δ 65.59 (d, 2 P, μ_3 -P^AS) and 16.30 (d, 2 P, P^XPh₃) (AX system, ${}^{2}J_{P^A,P^X} = 464$ Hz).

Complex **5** was prepared similarly: $[{Pd(\mu-SPPh_2)(C_6F_5)-(PPh_3)}_2]$ (0.424 g, 0.281 mmol), $[Pt(C_6F_5)_2(thf)_2]$ (0.189 g, 0.281 mmol), $[Pd_2Pt(\mu_3-SPPh_2)_2(C_6F_5)_4(PPh_3)_2]$ **5** (0.480 g, 84% yield), yellow solid (Found: C, 48.95; H, 2.50. $C_{84}H_{50}F_{20}P_4Pd_2PtS_2$ requires C, 49.55; H, 2.45%). IR (cm⁻¹): 1500vs(C_6F_5),957vs(C_6F_5),798s,789s,777s(C_6F_5 ,X-sensitive), 532vs, 520vs, 491vs [(SPPh_2)⁻ + PPh_3]. NMR (room temp.): ¹⁹F, δ -110.78 (d, 2 F, F_o), -113.84 (d, 2 F, F_o, ³J_{Pt-F_o} = 435), -115.07 (d, 2 F, F_o), -118.97 (d, 2 F, F_o, ³J_{Pt-F_o} = 373 Hz), -160.17 (t, 2 F, F_p), -161.59 (m, 2 F, F_m), -162.47 (m, 2 F, F_m), -164.66 (t, 2 F, F_p) and -165.94 (m, 4 F, F_m); ³¹P-{¹H}, δ 73.74 (d, 2 P, μ_3 -P^AS, ²J_{Pt-P^A} = 114) and 16.70 (d, 2 P, P^XPh_3, ³J_{Pt-P^X} = 90) (AX system, ²J_{P^{A-P^X}</sub> = 459 Hz).</sub>}

 ${}^{31}P{}^{-31}P$ COSY Experiments.—The experiments were performed at a measuring frequency of 121.5014 MHz in CDCl₃. The data were acquired into a 256 × 1024 matrix and then transformed into 1024 × 1024 points using a sine window in each dimension.

Crystal Structure Determination .- Suitable crystals of complex 1 (crystal size $0.25 \times 0.45 \times 0.35$ mm) were obtained by slow diffusion of *n*-hexane into a CH_2Cl_2 solution of the crude product at room temperature. Intensity data were recorded at room temperature using graphite-monochromated Mo-Ka X-radiation on a Enraf-Nonius CAD4 diffractometer $(\theta_{max} = 22^{\circ})$. Accurate lattice parameters were determined from the position of 25 reflections ($20 \le 2\theta \le 21^\circ$). The cell dimensions and Laue group were verified by axial photographs of [1 0 0], [0 1 0], [0 0 1] and [1 0 2]. The latter was photographed because it is an axis of a possible transformation to a metrically orthorhombic, C-centred cell. The photo of [0 1 0] clearly showed the presence of mirror symmetry, while all of the other photographs clearly showed the absence of mirrors. We did not detect any signs of superlattice scattering in any of the photographs. Intensity data were corrected for Lorentz and polarization effects. No absorption correction was applied.

Crystal data. C₈₁H₆₂ClF₁₀NO₄Pd₃P₄S₂·0.8CH₂Cl₂, 1·0.8CH₂Cl₂, M = 1913.99, monoclinic, space group $P2_1/c$, a = 14.185(3), b = 21.589(4), c = 27.440(5)Å, $\beta = 104.95(3)^{\circ}$, U = 8118.79Å³, Z = 4, $D_c = 1.56$ g cm⁻³, F(000) = 3864, $\mu = 9.6$ cm⁻¹, 10751 unique data, 5989 observed data [$F > 4.0\sigma(F$]] for the refinement of 860 parameters, scan method ω -20, $w = 1/[\sigma^2(F) + 0.00\ 077F^2]$, R = 0.0702, R' = 0.0849, $\Delta/\sigma = 0.002$, largest, smallest difference peaks 0.78, -1.01 e Å⁻³.

Structure solution and refinement. The structure was solved by the use of Patterson and Fourier methods. In the final refinement all non-hydrogen atoms, except the light atoms of the disordered $S(1',2')Pd(3')(C_6H_4CH_2NMe_2-2)$ group, the perchlorate anion and the CH2Cl2 moiety, were refined with anisotropic thermal parameters. The phenyl groups, *i.e.* C_6H_5 but not C_6F_5 , were refined as rigid groups with idealized geometry, as was the six-membered ring of the dimethylbenzylamine ligand. Loose observational restraints were used for the interatomic distances of the CH₂Cl₂ solvent molecule. Blocked full-matrix least-squares calculations were done on a VAX 4000-300 computer using the SHELXTL-PLUS software package.¹⁸ Hydrogen atoms were not included in the structural model. Other than the inability to use anisotropic thermal parameters for the C, S and N atoms of the disordered group, we did not observe any specially deleterious effects resulting from the disorder. We conducted one further test for 'missing symmetry' as follows. If the structure pertained to a highersymmetry crystal system, such as orthorhombic, then our data set, consisting of a quadrant, would have at least two equivalents of each unique reflection. Symmetry equivalent data must have the same value of 20. Therefore, we listed F_{0} and $F_{\rm c}$ values at the end of the refinement, sorted by 20. A visual inspection of this list did not show any pairing of reflections with similar F_0 and F_c at equal or nearly equal 20 values

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain) (PB92-0364) for financial support and the British Council and the Spanish Ministry of Education and Science for an Acciones Integradas grant. E. P. U. thanks the Diputación General de Aragón (D.G.A.) for a post-doctoral fellowship.

References

- (a) B. Walther, Coord. Chem. Rev., 1984, 60, 67; (b) A. F. M. M. Rahman, C. Ceccarelli, J. P. Oliver, B. Messbauer, H. Meyer and B. Walther, Inorg. Chem., 1985, 24, 2355; (c) M. T. Pinillos, M. P. Jarauta, D. Carmona, L. A. Oro, M. C. Apreda, C. Foces-Foces and F. H. Cano, J. Chem. Soc., Dalton Trans., 1989, 1987.
- 2 L. Gelmini and D. W. Stephan, Organometallics, 1987, 6, 1515.
- 3 (a) J. D. Fotheringham and T. A. Stephenson, J. Organomet. Chem., 1985, **284**, C12; (b) M. T. Pinillos, M. P. Jarauta, L. A. Oro, A. Tiripicchio and M. Tiripicchio-Camellini, J. Organomet. Chem., 1988, **339**, 181; (c) B. Walther, H. Hartung, B. Messbauer, V. Baumeister, M. Maschmeir, D. Dargatz and I. Hetzke, *Inorg.* Chim. Acta, 1990, 171, 171; (d) K. P. Wagner, R. W. Hess,

P. M. Treichel and J. C. Calabrese, Inorg. Chem., 1975, 14, 1121; (e) B. Walther, B. Messbauer and H. Meyer, Inorg. Chim. Acta, 1979, 37, L525.

- 4 D. H. M. W. Thewissen, J. Organomet. Chem., 1980, 192, 115.
- 5 J. Forniés, F. Martinez, R. Navarro, E. P. Urriolabeitia and A. J. Welch, J. Chem. Soc., Dalton Trans., 1993, 2147.
- 6 G. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 7 E. Maslowsky, jun., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437 and references therein.
- 8 (a) J. Forniés, R. Navarro, V. Sicilia and M. Tomás, Inorg. Chem., 1993, 32, 3675; (b) J. Forniés, R. Navarro, V. Sicilia, F. Martínez and A. J. Welch, J. Organomet. Chem., 1991, 408, 425.
- 9 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091.
- 10 (a) A. J. Deeming, I. P. Rothwell, M. B. Hursthouse and L. New, J. Chem. Soc., Dalton Trans., 1978, 1490; (b) A. J. Deeming, M. N. Meah, P. A. Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1988, 2193, and references therein.
- 11 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1.
- 12 M. Nardelli, Comput. Chem., 1983, 7, 95.
- 13 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1985.4.1912
- 14 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1986, 5, 1581.
- 15 A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc., 1968, 90, 909.
- 16 G. E. Hartwell, R. V. Lawrence and M. J. Smas, Chem. Commun., 1970, 912; A. J. Deeming and I. P. Rothwell, J. Organomet. Chem., 1981, 205, 117.
- 17 A. C. Cope and R. W. Siekman, J. Am. Chem. Soc., 1965, 87, 3272.
- 18 SHELXTL-PLUS, Software Package for the Determination of Crystal Structure, Release 4.0, Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1990.

Received 28th April 1995; Paper 5/02726H